Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,636 Bytes
8fb99cf 2d7c038 8fb99cf 793fa41 7ea8e17 8fb99cf a97032a 8fb99cf a97032a 8fb99cf a97032a 8fb99cf bd9c628 8fb99cf a97032a 8fb99cf a97032a 8fb99cf eb81c16 8fb99cf eb81c16 8fb99cf a97032a 8fb99cf 0946cca 8fb99cf a97032a 8fb99cf a97032a 8fb99cf eb81c16 8fb99cf a97032a 8fb99cf a97032a 8fb99cf a97032a 8fb99cf a97032a 8fb99cf eb81c16 8fb99cf a97032a 5a60a35 8fb99cf a97032a 5a60a35 8fb99cf a97032a 8fb99cf 0946cca 8fb99cf a97032a 5a60a35 8fb99cf a97032a 8fb99cf a97032a 8fb99cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import os
import cv2
import gradio as gr
import numpy as np
import random
import base64
import requests
import json
import time
import spaces
from gradio_box_promptable_image import BoxPromptableImage
from gen_box_func import generate_parameters, visualize
import torch
from RAG_pipeline_flux import RAG_FluxPipeline
MAX_SEED = 999999
pipe = RAG_FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
global run_nums
def update_run_num():
with open("assets/run_num.txt", "r+") as f:
run_num = int(f.read().strip()) + 1
f.seek(0)
f.write(str(run_num))
return run_num
# init
run_num = update_run_num()
def read_run_num():
with open("assets/run_num.txt", "r+") as f:
run_num = int(f.read().strip())
return run_num
def get_box_inputs(prompts):
# if isinstance(prompts, str):
# prompts = json.loads(prompts)
if prompts=="layout1":
prompts=[[0.05*1024, 0.05*1024, 2.0, (0.05+0.40)*1024, (0.05+0.9)*1024, 3.0], [0.5*1024, 0.05*1024, 2.0, (0.5+0.45)*1024, (0.05+0.9)*1024, 3.0]]
elif prompts=="layout2":
prompts=[[20.0, 425.0, 2.0, 551.0, 1008.0, 3.0], [615.0, 84.0, 2.0, 1000.0, 389.0, 3.0]]
elif prompts=="layout3":
prompts=[[0.2*1024, 0.1*1024, 2.0, (0.2+0.6)*1024, (0.1+0.4)*1024, 3.0],[0.2*1024, 0.6*1024, 2.0, (0.2+0.6)*1024, (0.6+0.35)*1024, 3.0]]
elif prompts=="layout4":
prompts=[[9.0, 153.0, 2.0, 343.0, 959.0, 3.0], [376.0, 145.0, 2.0, 692.0, 959.0, 3.0], [715.0, 143.0, 2.0, 1015.0, 956.0, 3.0]]
box_inputs = []
for prompt in prompts:
# print("prompt",prompt)
if prompt[2] == 2.0 and prompt[5] == 3.0:
box_inputs.append((prompt[0], prompt[1], prompt[3], prompt[4]))
return box_inputs
@spaces.GPU
def rag_gen(
# box_prompt_image,
box_point,
box_image,
prompt,
coarse_prompt,
detailed_prompt,
HB_replace,
SR_delta,
num_inference_steps,
guidance_scale,
seed,
randomize_seed,
):
points, image = box_point, box_image
print("points", points)
box_inputs = get_box_inputs(points)
# prompt_img_height, prompt_img_width, _ = image.shape
prompt_img_height, prompt_img_width = 1024,1024
# GREEN = (36, 255, 12)
HB_prompt_list = coarse_prompt.split("BREAK")
HB_m_offset_list, HB_n_offset_list, HB_m_scale_list, HB_n_scale_list, SR_hw_split_ratio = generate_parameters(box_inputs, prompt_img_width, prompt_img_height)
image = visualize(HB_m_offset_list, HB_n_offset_list, HB_m_scale_list, HB_n_scale_list, SR_hw_split_ratio, prompt_img_width, prompt_img_height)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
else:
seed = seed % MAX_SEED
SR_prompt = detailed_prompt
rag_image = pipe(
SR_delta=SR_delta,
SR_hw_split_ratio=SR_hw_split_ratio,
SR_prompt=SR_prompt,
HB_prompt_list=HB_prompt_list,
HB_m_offset_list=HB_m_offset_list,
HB_n_offset_list=HB_n_offset_list,
HB_m_scale_list=HB_m_scale_list,
HB_n_scale_list=HB_n_scale_list,
HB_replace=HB_replace,
seed=seed,
prompt=prompt,
height=1024,
width=1024,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
global run_num
run_num = update_run_num()
# return image, rag_image, seed, f"<span style='font-size: 16px; font-weight: bold; color: red; display: block; text-align: center;'>Total inference runs: {run_num}</span>"
# return rag_image, seed, f"<span style='font-size: 16px; font-weight: bold; color: red; display: block; text-align: center;'>Total inference runs: {run_num}</span>"
return rag_image, seed
example_path = os.path.join(os.path.dirname(__file__), 'assets')
css="""
#col-left {
margin: 0 auto;
max-width: 400px;
}
#col-right {
margin: 0 auto;
max-width: 600px;
}
#col-showcase {
margin: 0 auto;
max-width: 1100px;
}
#button {
color: blue;
}
#custom-label {
color: purple;
font-size: 16px;
font-weight: bold;
}
"""
assets_root_path = os.path.join(os.path.dirname(__file__), 'assets')
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
with gr.Blocks(css=css) as demo:
gr.HTML(load_description("assets/title.md"))
# run_nums_box = gr.Markdown(
# value=f"<span style='font-size: 16px; font-weight: bold; color: red; display: block; text-align: center;'>Total inference runs: {run_num}</span>"
# )
with gr.Row():
with gr.Column(elem_id="col-left"):
gr.HTML("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
<div>
</div>
<div>
Step 1. Choose
<span style="color: purple; font-weight: bold;">layout example</span>
</div>
</div>
""")
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=2
)
coarse_prompt = gr.Textbox(
label="Regional Fundamental Prompt(BREAK is a delimiter).",
placeholder="Enter your prompt",
lines=2
)
detailed_prompt = gr.Textbox(
label="Regional Highly Descriptive Prompt(BREAK is a delimiter).",
placeholder="Enter your prompt",
lines=2
)
with gr.Column(elem_id="col-left"):
default_image_path = "assets/images_template.png"
box_image = gr.Image(
show_label=False,
interactive=False,
label="Layout",
value=default_image_path)
# box_prompt_image = BoxPromptableImage(
# show_label=False,
# interactive=False,
# label="Layout",
# value={"image": default_image_path})
# box_prompt_image = gr.Image(label="Layout", show_label=True)
gr.HTML("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 16px;">
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 12px;">
<strong>
<span style="color: gray; font-weight: bold;">Tip: You can get a more ideal picture by adjusting HB_replace and SR_delta</span>
</strong>
</div>
</div>
""")
with gr.Column(elem_id="col-right"):
gr.HTML("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
<div>
Step 2. Press “Run” to get results
</div>
</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 10px;">
<div>
Errors may be displayed due to insufficient computing power
</div>
</div>
""")
# layout = gr.Image(label="Layout", show_label=True)
result = gr.Image(label="Result", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Random seed", value=True)
with gr.Row():
HB_replace = gr.Slider(
label="HB_replace(The times of hard binding. More can make the position control more precise, but may lead to obvious boundaries.)",
minimum=0,
maximum=8,
step=1,
value=2,
)
with gr.Row():
SR_delta = gr.Slider(
label="SR_delta(The fusion strength of image latent and regional-aware local latent. This is a flexible parameter, you can try 0.25, 0.5, 0.75, 1.0.)",
minimum=0.0,
maximum=1,
step=0.1,
value=1,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Row():
button = gr.Button("Run", elem_id="button")
box_point = gr.Textbox(visible=False)
gr.on(
triggers=[
button.click,
],
fn=rag_gen,
# fn=lambda *args: rag_gen(*args,[]),
inputs=[
box_point,
box_image,
prompt,
coarse_prompt,
detailed_prompt,
HB_replace,
SR_delta,
num_inference_steps,
guidance_scale, seed,
randomize_seed,
],
# outputs=[layout, result, seed, run_nums_box],
# outputs=[result, seed, run_nums_box],
outputs=[result, seed],
api_name="run",
)
with gr.Column():
gr.HTML('<div id="custom-label">Layout Example ⬇️</div>')
gr.Examples(
# label="Layout Example (For more complex layouts, please run our code directly.)",
examples=[
[
"layout1",
"assets/case1.png",
"a man is holding a bag, a man is talking on a cell phone.", # prompt
"A man holding a bag. BREAK a man holding a cell phone to his ear.", # coarse_prompt
"A man holding a bag, gripping it firmly, with a casual yet purposeful stance. BREAK a man, engaged in conversation, holding a cell phone to his ear.", # detailed_prompt
3, # HB_replace
1.0, # SR_delta
20, # num_inference_steps
3.5, # guidance_scale
1234, # seed
False, # randomize_seed
],
[
"layout2",
"assets/case2.png",
"A woman looking at the moon", # prompt
"a woman BREAK a moon", # coarse_prompt
"A woman, standing gracefully, her gaze fixed on the sky with a sense of wonder. BREAK The moon, luminous and full, casting a soft glow across the tranquil night.", # detailed_prompt
3, # HB_replace
0.8, # SR_delta
20, # num_inference_steps
3.5, # guidance_scale
1233, # seed
False, # randomize_seed
],
[
"layout3",
"assets/case3.png",
"a turtle on the bottom of a phone", # prompt
"Phone BREAK Turtle", # coarse_prompt
"The phone, placed above the turtle, potentially with its screen or back visible, its sleek design prominent. BREAK The turtle, below the phone, with its shell textured and detailed, eyes slightly protruding as it looks upward.", # detailed_prompt
2, # HB_replace
0.8, # SR_delta
20, # num_inference_steps
3.5, # guidance_scale
1233, # seed
False, # randomize_seed
],
[
"layout4",
"assets/case4.png",
"From left to right, a blonde ponytail Europe girl in white shirt, a brown curly hair African girl in blue shirt printed with a bird, an Asian young man with black short hair in suit are walking in the campus happily.", # prompt
"A blonde ponytail European girl in a white shirt BREAK A brown curly hair African girl in a blue shirt printed with a bird BREAK An Asian young man with black short hair in a suit", # coarse_prompt
"A blonde ponytail European girl in a crisp white shirt, walking with a light smile. Her ponytail swings slightly as she enjoys the lively atmosphere of the campus. BREAK A brown curly hair African girl, her vibrant blue shirt adorned with a bird print. Her joyful expression matches her energetic stride as her curls bounce lightly in the breeze. BREAK An Asian young man in a sharp suit, his black short hair neatly styled, walking confidently alongside the two girls. His suit contrasts with the casual campus environment, adding an air of professionalism to the scene.", # detailed_prompt
2, # HB_replace
1.0, # SR_delta
20, # num_inference_steps
3.5, # guidance_scale
1234, # seed
False, # randomize_seed
],
],
inputs=[
box_point,
box_image,
prompt,
coarse_prompt,
detailed_prompt,
HB_replace,
SR_delta,
num_inference_steps,
guidance_scale,
seed,
randomize_seed
],
outputs=None,
fn=rag_gen,
cache_examples=False,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True, server_port=7860)
|