Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from dotenv import load_dotenv | |
from utils import ( | |
extract_text_from_pdf, | |
build_hierarchical_tree, | |
save_tree, | |
hybrid_retrieval, | |
rag_answer, | |
) | |
# Load API key from .env | |
load_dotenv() | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
# Create necessary directories | |
os.makedirs("uploaded_textbooks", exist_ok=True) | |
os.makedirs("hierarchical_trees", exist_ok=True) | |
os.makedirs("retrieved_contexts", exist_ok=True) | |
# Streamlit UI | |
st.title("Hierarchical Question-Answering System ππ€") | |
st.markdown( | |
"Upload textbooks, explore their structure, and ask questions powered by AI." | |
) | |
# Upload PDF section | |
uploaded_files = st.file_uploader("Upload Textbooks (PDF)", type=["pdf"], accept_multiple_files=True) | |
if uploaded_files: | |
for uploaded_file in uploaded_files: | |
file_path = os.path.join("uploaded_textbooks", uploaded_file.name) | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file.read()) | |
# Extract text | |
st.write(f"Processing: {uploaded_file.name}") | |
extracted_text = extract_text_from_pdf(file_path) | |
# Build hierarchical tree | |
tree = build_hierarchical_tree(extracted_text, textbook_title=uploaded_file.name) | |
tree_path = os.path.join("hierarchical_trees", f"{uploaded_file.name}_tree.json") | |
save_tree(tree, tree_path) | |
st.success(f"Processed and indexed: {uploaded_file.name}") | |
# Query Section | |
query = st.text_input("Ask a question:") | |
if query: | |
st.write("Retrieving relevant information...") | |
relevant_text = hybrid_retrieval(query, OPENAI_API_KEY) | |
if relevant_text: | |
st.write("Generating an answer...") | |
answer = rag_answer(query, relevant_text, OPENAI_API_KEY) | |
st.write(f"**Answer:** {answer}") | |
st.write("**Relevant Context:**") | |
st.write(relevant_text) | |
else: | |
st.write("No relevant information found.") | |