Spaces:
Sleeping
Sleeping
File size: 9,646 Bytes
81dbae6 8de60e6 81dbae6 8de60e6 81dbae6 8de60e6 81dbae6 8de60e6 81dbae6 8de60e6 81dbae6 8de60e6 81dbae6 8de60e6 81dbae6 8de60e6 81dbae6 8de60e6 81dbae6 8de60e6 81dbae6 8de60e6 81dbae6 8de60e6 81dbae6 8de60e6 81dbae6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gradio as gr
import torch
import onnxruntime as ort
from PIL import Image
import requests
import numpy as np
from transformers import AutoTokenizer, AutoProcessor
import os
os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/decoder_model_merged_q4f16.onnx')
os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/embed_tokens_q4f16.onnx')
os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/vision_encoder_q4f16.onnx')
# Load the tokenizer and processor
tokenizer = AutoTokenizer.from_pretrained("llava-hf/llava-interleave-qwen-0.5b-hf")
processor = AutoProcessor.from_pretrained("llava-hf/llava-interleave-qwen-0.5b-hf")
vision_encoder_session = ort.InferenceSession("vision_encoder_q4f16.onnx")
decoder_session = ort.InferenceSession("decoder_model_merged_q4f16.onnx")
embed_tokens_session = ort.InferenceSession("embed_tokens_q4f16.onnx")
def merge_input_ids_with_image_features(image_features, inputs_embeds, input_ids, attention_mask,pad_token_id,special_image_token_id):
num_images, num_image_patches, embed_dim = image_features.shape
batch_size, sequence_length = input_ids.shape
left_padding = not np.sum(input_ids[:, -1] == pad_token_id)
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == special_image_token_id
num_special_image_tokens = np.sum(special_image_token_mask, axis=-1)
# Compute the maximum embed dimension
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
batch_indices, non_image_indices = np.where(input_ids != special_image_token_id)
# 2. Compute the positions where text should be written
# Calculate new positions for text tokens in merged image-text sequence.
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
# `np.cumsum` computes how each image token shifts subsequent text token positions.
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
new_token_positions = np.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
if left_padding:
new_token_positions += nb_image_pad[:, None] # offset for left padding
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
# 3. Create the full embedding, already padded to the maximum position
final_embedding = np.zeros((batch_size, max_embed_dim, embed_dim), dtype=np.float32)
final_attention_mask = np.zeros((batch_size, max_embed_dim), dtype=np.int64)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
image_to_overwrite = np.full((batch_size, max_embed_dim), True)
image_to_overwrite[batch_indices, text_to_overwrite] = False
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None]
final_embedding[image_to_overwrite] = image_features.reshape(-1, embed_dim)
final_attention_mask = np.logical_or(final_attention_mask, image_to_overwrite).astype(final_attention_mask.dtype)
position_ids = final_attention_mask.cumsum(axis=-1) - 1
position_ids = np.where(final_attention_mask == 0, 1, position_ids)
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
batch_indices, pad_indices = np.where(input_ids == pad_token_id)
indices_to_mask = new_token_positions[batch_indices, pad_indices]
final_embedding[batch_indices, indices_to_mask] = 0
return final_embedding, final_attention_mask, position_ids
# Load model and processor
def describe_image(image):
if(image.mode != 'RGB'):
image = image.convert('RGB')
conversation = [
{
"role": "system",
"content": "You are a helpful assistant who describes image."
},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this image in about 200 words and explain each and every element in full detail"},
{"type": "image"},
],
},
]
# Apply chat template
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Preprocess the image and text
inputs = processor(images=image, text=prompt, return_tensors="np")
vision_input_name = vision_encoder_session.get_inputs()[0].name
vision_output_name = vision_encoder_session.get_outputs()[0].name
vision_features = vision_encoder_session.run([vision_output_name], {vision_input_name: inputs["pixel_values"]})[0]
# print('Total Time for Image Features Making ', time.time() - start)
# Tokens for the prompt
input_ids, attention_mask = inputs["input_ids"], inputs["attention_mask"]
# Prepare inputs
sequence_length = input_ids.shape[1]
batch_size = 1
num_layers = 24
head_dim = 64
num_heads = 16
pad_token_id = tokenizer.pad_token_id
past_sequence_length = 0 # Set to 0 for the initial pass
special_image_token_id = 151646
# Position IDs
position_ids = np.arange(sequence_length, dtype=np.int64).reshape(1, -1)
# Past Key Values
past_key_values = {
f"past_key_values.{i}.key": np.zeros((batch_size, num_heads, past_sequence_length, head_dim), dtype=np.float32)
for i in range(num_layers)
}
past_key_values.update({
f"past_key_values.{i}.value": np.zeros((batch_size, num_heads, past_sequence_length, head_dim), dtype=np.float32)
for i in range(num_layers)
})
# Run embed tokens
embed_input_name = embed_tokens_session.get_inputs()[0].name
embed_output_name = embed_tokens_session.get_outputs()[0].name
token_embeddings = embed_tokens_session.run([embed_output_name], {embed_input_name: input_ids})[0]
# Combine token embeddings and vision features
combined_embeddings, attention_mask, position_ids = merge_input_ids_with_image_features(vision_features, token_embeddings, input_ids, attention_mask,pad_token_id,special_image_token_id)
combined_len = combined_embeddings.shape[1]
# Combine all inputs
decoder_inputs = {
"attention_mask": attention_mask,
"position_ids": position_ids,
"inputs_embeds": combined_embeddings,
**past_key_values
}
# Print input shapes
for name, value in decoder_inputs.items():
print(f"{name} shape: {value.shape} dtype {value.dtype}")
# Run the decoder
decoder_input_names = [input.name for input in decoder_session.get_inputs()]
decoder_output_name = decoder_session.get_outputs()[0].name
names = [n.name for n in decoder_session.get_outputs()]
outputs = decoder_session.run(names, {name: decoder_inputs[name] for name in decoder_input_names if name in decoder_inputs})
# ... (previous code remains the same until after the decoder run)
# print(f"Outputs shape: {outputs[0].shape}")
# print(f"Outputs type: {outputs[0].dtype}")
# Process outputs (decode tokens to text)
generated_tokens = []
eos_token_id = tokenizer.eos_token_id
max_new_tokens = 2048
for i in range(max_new_tokens):
logits = outputs[0]
past_kv = outputs[1:]
logits_next_token = logits[:, -1]
token_id = np.argmax(logits_next_token)
if token_id == eos_token_id:
break
generated_tokens.append(token_id)
# Prepare input for next token generation
new_input_embeds = embed_tokens_session.run([embed_output_name], {embed_input_name: np.array([[token_id]])})[0]
past_key_values = {name.replace("present", "past_key_values"): value for name, value in zip(names[1:], outputs[1:])}
attention_mask = np.ones((1, combined_len + i + 1), dtype=np.int64)
position_ids = np.arange(combined_len + i + 1, dtype=np.int64).reshape(1, -1)[:, -1:]
decoder_inputs = {
"attention_mask": attention_mask,
"position_ids": position_ids,
"inputs_embeds": new_input_embeds,
**past_key_values
}
outputs = decoder_session.run(names, {name: decoder_inputs[name] for name in decoder_input_names if name in decoder_inputs})
# Convert to list of integers
token_ids = [int(token) for token in generated_tokens]
print(f"Generated token IDs: {token_ids}")
# Decode tokens one by one
decoded_tokens = [tokenizer.decode([token]) for token in token_ids]
print(f"Decoded tokens: {decoded_tokens}")
# Full decoded output
decoded_output = tokenizer.decode(token_ids, skip_special_tokens=True)
return decoded_output
# Create Gradio interface
interface = gr.Interface(
fn=describe_image,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(lines=5, placeholder="Description will appear here"),
title="Image Description Generator",
description="Upload an image to get a detailed description."
)
# Enable API
interface.launch(share=True,show_error=True,debug=True) |