Narayana02 commited on
Commit
f7fb976
1 Parent(s): 5bde38f

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +211 -0
  2. packages.txt +1 -0
  3. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ import onnxruntime as ort
4
+ from PIL import Image
5
+ import requests
6
+ import numpy as np
7
+ from transformers import AutoTokenizer, AutoProcessor
8
+ import os
9
+
10
+ if not os.path.exists("vision_encoder_q4f16.onnx"):
11
+ os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/vision_encoder_q4f16.onnx')
12
+ if not os.path.exists("decoder_model_merged_q4f16.onnx"):
13
+ os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/decoder_model_merged_q4f16.onnx')
14
+ if not os.path.exists("embed_tokens_q4f16.onnx"):
15
+ os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/embed_tokens_q4f16.onnx')
16
+
17
+ # Load the tokenizer and processor
18
+ tokenizer = AutoTokenizer.from_pretrained("llava-hf/llava-interleave-qwen-0.5b-hf")
19
+ processor = AutoProcessor.from_pretrained("llava-hf/llava-interleave-qwen-0.5b-hf")
20
+
21
+ vision_encoder_session = ort.InferenceSession("vision_encoder_q4f16.onnx")
22
+ decoder_session = ort.InferenceSession("decoder_model_merged_q4f16.onnx")
23
+ embed_tokens_session = ort.InferenceSession("embed_tokens_q4f16.onnx")
24
+
25
+ def merge_input_ids_with_image_features(image_features, inputs_embeds, input_ids, attention_mask,pad_token_id,special_image_token_id):
26
+ num_images, num_image_patches, embed_dim = image_features.shape
27
+ batch_size, sequence_length = input_ids.shape
28
+ left_padding = not np.sum(input_ids[:, -1] == pad_token_id)
29
+ # 1. Create a mask to know where special image tokens are
30
+ special_image_token_mask = input_ids == special_image_token_id
31
+ num_special_image_tokens = np.sum(special_image_token_mask, axis=-1)
32
+ # Compute the maximum embed dimension
33
+ max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
34
+ batch_indices, non_image_indices = np.where(input_ids != special_image_token_id)
35
+
36
+ # 2. Compute the positions where text should be written
37
+ # Calculate new positions for text tokens in merged image-text sequence.
38
+ # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
39
+ # `np.cumsum` computes how each image token shifts subsequent text token positions.
40
+ # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
41
+ new_token_positions = np.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
42
+ nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
43
+ if left_padding:
44
+ new_token_positions += nb_image_pad[:, None] # offset for left padding
45
+ text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
46
+
47
+ # 3. Create the full embedding, already padded to the maximum position
48
+ final_embedding = np.zeros((batch_size, max_embed_dim, embed_dim), dtype=np.float32)
49
+ final_attention_mask = np.zeros((batch_size, max_embed_dim), dtype=np.int64)
50
+
51
+ # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
52
+ # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
53
+ final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
54
+ final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
55
+ # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
56
+ image_to_overwrite = np.full((batch_size, max_embed_dim), True)
57
+ image_to_overwrite[batch_indices, text_to_overwrite] = False
58
+ image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None]
59
+
60
+ final_embedding[image_to_overwrite] = image_features.reshape(-1, embed_dim)
61
+ final_attention_mask = np.logical_or(final_attention_mask, image_to_overwrite).astype(final_attention_mask.dtype)
62
+ position_ids = final_attention_mask.cumsum(axis=-1) - 1
63
+ position_ids = np.where(final_attention_mask == 0, 1, position_ids)
64
+
65
+ # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
66
+ batch_indices, pad_indices = np.where(input_ids == pad_token_id)
67
+ indices_to_mask = new_token_positions[batch_indices, pad_indices]
68
+ final_embedding[batch_indices, indices_to_mask] = 0
69
+
70
+ return final_embedding, final_attention_mask, position_ids
71
+
72
+ # Load model and processor
73
+
74
+ def describe_image(image):
75
+ if(image.mode != 'RGB'):
76
+ image = image.convert('RGB')
77
+ conversation = [
78
+ {
79
+ "role": "system",
80
+ "content": "You are a helpful assistant who describes image."
81
+ },
82
+ {
83
+ "role": "user",
84
+ "content": [
85
+ {"type": "text", "text": "Describe this image in about 200 words and explain each and every element in full detail"},
86
+ {"type": "image"},
87
+ ],
88
+ },
89
+ ]
90
+
91
+ # Apply chat template
92
+ prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
93
+
94
+ # Preprocess the image and text
95
+ inputs = processor(images=image, text=prompt, return_tensors="np")
96
+ vision_input_name = vision_encoder_session.get_inputs()[0].name
97
+ vision_output_name = vision_encoder_session.get_outputs()[0].name
98
+ vision_features = vision_encoder_session.run([vision_output_name], {vision_input_name: inputs["pixel_values"]})[0]
99
+
100
+ # print('Total Time for Image Features Making ', time.time() - start)
101
+
102
+ # Tokens for the prompt
103
+ input_ids, attention_mask = inputs["input_ids"], inputs["attention_mask"]
104
+
105
+ # Prepare inputs
106
+ sequence_length = input_ids.shape[1]
107
+ batch_size = 1
108
+ num_layers = 24
109
+ head_dim = 64
110
+ num_heads = 16
111
+ pad_token_id = tokenizer.pad_token_id
112
+ past_sequence_length = 0 # Set to 0 for the initial pass
113
+ special_image_token_id = 151646
114
+
115
+ # Position IDs
116
+ position_ids = np.arange(sequence_length, dtype=np.int64).reshape(1, -1)
117
+
118
+ # Past Key Values
119
+ past_key_values = {
120
+ f"past_key_values.{i}.key": np.zeros((batch_size, num_heads, past_sequence_length, head_dim), dtype=np.float32)
121
+ for i in range(num_layers)
122
+ }
123
+ past_key_values.update({
124
+ f"past_key_values.{i}.value": np.zeros((batch_size, num_heads, past_sequence_length, head_dim), dtype=np.float32)
125
+ for i in range(num_layers)
126
+ })
127
+
128
+ # Run embed tokens
129
+ embed_input_name = embed_tokens_session.get_inputs()[0].name
130
+ embed_output_name = embed_tokens_session.get_outputs()[0].name
131
+ token_embeddings = embed_tokens_session.run([embed_output_name], {embed_input_name: input_ids})[0]
132
+
133
+ # Combine token embeddings and vision features
134
+ combined_embeddings, attention_mask, position_ids = merge_input_ids_with_image_features(vision_features, token_embeddings, input_ids, attention_mask,pad_token_id,special_image_token_id)
135
+ combined_len = combined_embeddings.shape[1]
136
+
137
+ # Combine all inputs
138
+ decoder_inputs = {
139
+ "attention_mask": attention_mask,
140
+ "position_ids": position_ids,
141
+ "inputs_embeds": combined_embeddings,
142
+ **past_key_values
143
+ }
144
+
145
+ # Print input shapes
146
+ for name, value in decoder_inputs.items():
147
+ print(f"{name} shape: {value.shape} dtype {value.dtype}")
148
+
149
+ # Run the decoder
150
+ decoder_input_names = [input.name for input in decoder_session.get_inputs()]
151
+ decoder_output_name = decoder_session.get_outputs()[0].name
152
+ names = [n.name for n in decoder_session.get_outputs()]
153
+ outputs = decoder_session.run(names, {name: decoder_inputs[name] for name in decoder_input_names if name in decoder_inputs})
154
+
155
+ # ... (previous code remains the same until after the decoder run)
156
+ # print(f"Outputs shape: {outputs[0].shape}")
157
+ # print(f"Outputs type: {outputs[0].dtype}")
158
+
159
+ # Process outputs (decode tokens to text)
160
+ generated_tokens = []
161
+ eos_token_id = tokenizer.eos_token_id
162
+ max_new_tokens = 2048
163
+
164
+ for i in range(max_new_tokens):
165
+ logits = outputs[0]
166
+ past_kv = outputs[1:]
167
+ logits_next_token = logits[:, -1]
168
+ token_id = np.argmax(logits_next_token)
169
+
170
+ if token_id == eos_token_id:
171
+ break
172
+
173
+ generated_tokens.append(token_id)
174
+
175
+ # Prepare input for next token generation
176
+ new_input_embeds = embed_tokens_session.run([embed_output_name], {embed_input_name: np.array([[token_id]])})[0]
177
+
178
+ past_key_values = {name.replace("present", "past_key_values"): value for name, value in zip(names[1:], outputs[1:])}
179
+
180
+ attention_mask = np.ones((1, combined_len + i + 1), dtype=np.int64)
181
+ position_ids = np.arange(combined_len + i + 1, dtype=np.int64).reshape(1, -1)[:, -1:]
182
+
183
+ decoder_inputs = {
184
+ "attention_mask": attention_mask,
185
+ "position_ids": position_ids,
186
+ "inputs_embeds": new_input_embeds,
187
+ **past_key_values
188
+ }
189
+
190
+ outputs = decoder_session.run(names, {name: decoder_inputs[name] for name in decoder_input_names if name in decoder_inputs})
191
+
192
+ # Convert to list of integers
193
+ token_ids = [int(token) for token in generated_tokens]
194
+
195
+ print(f"Generated token IDs: {token_ids}")
196
+
197
+ # Decode tokens one by one
198
+ decoded_tokens = [tokenizer.decode([token]) for token in token_ids]
199
+ print(f"Decoded tokens: {decoded_tokens}")
200
+
201
+ # Full decoded output
202
+ decoded_output = tokenizer.decode(token_ids, skip_special_tokens=True)
203
+ return decoded_output
204
+
205
+ # Streamlit app
206
+ st.title("Image Description Generator")
207
+ uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
208
+ if uploaded_image is not None:
209
+ image = Image.open(uploaded_image)
210
+ description = describe_image(image)
211
+ st.text_area("Description", description, height=300)
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ wget
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ onnxruntime
2
+ onnx
3
+ gradio
4
+ Pillow
5
+ torch
6
+ transformers
7
+ numpy
8
+ flask
9
+ streamlit