import streamlit as st import torch import onnxruntime as ort from PIL import Image import requests import numpy as np from transformers import AutoTokenizer, AutoProcessor import os if not os.path.exists("vision_encoder_q4f16.onnx"): os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/vision_encoder_q4f16.onnx') if not os.path.exists("decoder_model_merged_q4f16.onnx"): os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/decoder_model_merged_q4f16.onnx') if not os.path.exists("embed_tokens_q4f16.onnx"): os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/embed_tokens_q4f16.onnx') # Load the tokenizer and processor tokenizer = AutoTokenizer.from_pretrained("llava-hf/llava-interleave-qwen-0.5b-hf") processor = AutoProcessor.from_pretrained("llava-hf/llava-interleave-qwen-0.5b-hf") vision_encoder_session = ort.InferenceSession("vision_encoder_q4f16.onnx") decoder_session = ort.InferenceSession("decoder_model_merged_q4f16.onnx") embed_tokens_session = ort.InferenceSession("embed_tokens_q4f16.onnx") def merge_input_ids_with_image_features(image_features, inputs_embeds, input_ids, attention_mask,pad_token_id,special_image_token_id): num_images, num_image_patches, embed_dim = image_features.shape batch_size, sequence_length = input_ids.shape left_padding = not np.sum(input_ids[:, -1] == pad_token_id) # 1. Create a mask to know where special image tokens are special_image_token_mask = input_ids == special_image_token_id num_special_image_tokens = np.sum(special_image_token_mask, axis=-1) # Compute the maximum embed dimension max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length batch_indices, non_image_indices = np.where(input_ids != special_image_token_id) # 2. Compute the positions where text should be written # Calculate new positions for text tokens in merged image-text sequence. # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens. # `np.cumsum` computes how each image token shifts subsequent text token positions. # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. new_token_positions = np.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1 nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] if left_padding: new_token_positions += nb_image_pad[:, None] # offset for left padding text_to_overwrite = new_token_positions[batch_indices, non_image_indices] # 3. Create the full embedding, already padded to the maximum position final_embedding = np.zeros((batch_size, max_embed_dim, embed_dim), dtype=np.float32) final_attention_mask = np.zeros((batch_size, max_embed_dim), dtype=np.int64) # 4. Fill the embeddings based on the mask. If we have ["hey" "", "how", "are"] # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835) image_to_overwrite = np.full((batch_size, max_embed_dim), True) image_to_overwrite[batch_indices, text_to_overwrite] = False image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None] final_embedding[image_to_overwrite] = image_features.reshape(-1, embed_dim) final_attention_mask = np.logical_or(final_attention_mask, image_to_overwrite).astype(final_attention_mask.dtype) position_ids = final_attention_mask.cumsum(axis=-1) - 1 position_ids = np.where(final_attention_mask == 0, 1, position_ids) # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens. batch_indices, pad_indices = np.where(input_ids == pad_token_id) indices_to_mask = new_token_positions[batch_indices, pad_indices] final_embedding[batch_indices, indices_to_mask] = 0 return final_embedding, final_attention_mask, position_ids # Load model and processor def describe_image(image): if(image.mode != 'RGB'): image = image.convert('RGB') conversation = [ { "role": "system", "content": "You are a helpful assistant who describes image." }, { "role": "user", "content": [ {"type": "text", "text": "Describe this image in about 200 words and explain each and every element in full detail"}, {"type": "image"}, ], }, ] # Apply chat template prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) # Preprocess the image and text inputs = processor(images=image, text=prompt, return_tensors="np") vision_input_name = vision_encoder_session.get_inputs()[0].name vision_output_name = vision_encoder_session.get_outputs()[0].name vision_features = vision_encoder_session.run([vision_output_name], {vision_input_name: inputs["pixel_values"]})[0] # print('Total Time for Image Features Making ', time.time() - start) # Tokens for the prompt input_ids, attention_mask = inputs["input_ids"], inputs["attention_mask"] # Prepare inputs sequence_length = input_ids.shape[1] batch_size = 1 num_layers = 24 head_dim = 64 num_heads = 16 pad_token_id = tokenizer.pad_token_id past_sequence_length = 0 # Set to 0 for the initial pass special_image_token_id = 151646 # Position IDs position_ids = np.arange(sequence_length, dtype=np.int64).reshape(1, -1) # Past Key Values past_key_values = { f"past_key_values.{i}.key": np.zeros((batch_size, num_heads, past_sequence_length, head_dim), dtype=np.float32) for i in range(num_layers) } past_key_values.update({ f"past_key_values.{i}.value": np.zeros((batch_size, num_heads, past_sequence_length, head_dim), dtype=np.float32) for i in range(num_layers) }) # Run embed tokens embed_input_name = embed_tokens_session.get_inputs()[0].name embed_output_name = embed_tokens_session.get_outputs()[0].name token_embeddings = embed_tokens_session.run([embed_output_name], {embed_input_name: input_ids})[0] # Combine token embeddings and vision features combined_embeddings, attention_mask, position_ids = merge_input_ids_with_image_features(vision_features, token_embeddings, input_ids, attention_mask,pad_token_id,special_image_token_id) combined_len = combined_embeddings.shape[1] # Combine all inputs decoder_inputs = { "attention_mask": attention_mask, "position_ids": position_ids, "inputs_embeds": combined_embeddings, **past_key_values } # Print input shapes for name, value in decoder_inputs.items(): print(f"{name} shape: {value.shape} dtype {value.dtype}") # Run the decoder decoder_input_names = [input.name for input in decoder_session.get_inputs()] decoder_output_name = decoder_session.get_outputs()[0].name names = [n.name for n in decoder_session.get_outputs()] outputs = decoder_session.run(names, {name: decoder_inputs[name] for name in decoder_input_names if name in decoder_inputs}) # ... (previous code remains the same until after the decoder run) # print(f"Outputs shape: {outputs[0].shape}") # print(f"Outputs type: {outputs[0].dtype}") # Process outputs (decode tokens to text) generated_tokens = [] eos_token_id = tokenizer.eos_token_id max_new_tokens = 2048 for i in range(max_new_tokens): logits = outputs[0] past_kv = outputs[1:] logits_next_token = logits[:, -1] token_id = np.argmax(logits_next_token) if token_id == eos_token_id: break generated_tokens.append(token_id) # Prepare input for next token generation new_input_embeds = embed_tokens_session.run([embed_output_name], {embed_input_name: np.array([[token_id]])})[0] past_key_values = {name.replace("present", "past_key_values"): value for name, value in zip(names[1:], outputs[1:])} attention_mask = np.ones((1, combined_len + i + 1), dtype=np.int64) position_ids = np.arange(combined_len + i + 1, dtype=np.int64).reshape(1, -1)[:, -1:] decoder_inputs = { "attention_mask": attention_mask, "position_ids": position_ids, "inputs_embeds": new_input_embeds, **past_key_values } outputs = decoder_session.run(names, {name: decoder_inputs[name] for name in decoder_input_names if name in decoder_inputs}) # Convert to list of integers token_ids = [int(token) for token in generated_tokens] print(f"Generated token IDs: {token_ids}") # Decode tokens one by one decoded_tokens = [tokenizer.decode([token]) for token in token_ids] print(f"Decoded tokens: {decoded_tokens}") # Full decoded output decoded_output = tokenizer.decode(token_ids, skip_special_tokens=True) return decoded_output # Streamlit app st.title("Image Description Generator") uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_image is not None: image = Image.open(uploaded_image) description = describe_image(image) st.text_area("Description", description, height=300)