File size: 5,143 Bytes
b166743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7875017
b166743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7875017
b166743
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import gradio as gr
import re
import requests
import json
import os
from screenshot import BG_COMP, BOX_COMP, GENERATION_VAR, PROMPT_VAR, main
from pathlib import Path

title = "BLOOM"
description = """Gradio Demo for BLOOM. To use it, simply add your text, or click one of the examples to load them.
Tips:
- Do NOT talk to BLOOM as an entity, it's not a chatbot but a webpage/blog/article completion model.
- For the best results: MIMIC a few sentences of a webpage similar to the content you want to generate.
Start a paragraph as if YOU were writing a blog, webpage, math post, coding article and BLOOM will generate a coherent follow-up. Longer prompts usually give more interesting results.
Options:
- sampling: imaginative completions (may be not super accurate e.g. math/history)
- greedy: accurate completions (may be more boring or have repetitions)
"""

API_URL = os.getenv("API_URL")

examples = [
    [
        'A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is: We were traveling in Africa and we saw these very cute whatpus. To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:',
        32,
        "Sample",
        False,
        "Sample 1",
    ],
    [
        "A poem about the beauty of science by Alfred Edgar Brittle\nTitle: The Magic Craft\nIn the old times",
        50,
        "Sample",
        False,
        "Sample 1",
    ],
    ["استخراج العدد العاملي في لغة بايثون:", 30, "Greedy", False, "Sample 1"],
    ["Pour déguster un ortolan, il faut tout d'abord", 32, "Sample", False, "Sample 1"],
    [
        "Traduce español de España a español de Argentina\nEl coche es rojo - el auto es rojo\nEl ordenador es nuevo - la computadora es nueva\nel boligrafo es negro -",
        16,
        "Sample",
        False,
        "Sample 1",
    ],
    [
        "Estos ejemplos quitan vocales de las palabras\nEjemplos:\nhola - hl\nmanzana - mnzn\npapas - pps\nalacran - lcrn\npapa -",
        16,
        "Sample",
        False,
        "Sample 1",
    ],
    [
        "Question: If I put cheese into the fridge, will it melt?\nAnswer:",
        32,
        "Sample",
        False,
        "Sample 1",
    ],
    ["Math exercise - answers:\n34+10=44\n54+20=", 16, "Greedy", False, "Sample 1"],
    [
        "Question: Where does the Greek Goddess Persephone spend half of the year when she is not with her mother?\nAnswer:",
        24,
        "Greedy",
        False,
        "Sample 1",
    ],
    [
        "spelling test answers.\nWhat are the letters in « language »?\nAnswer: l-a-n-g-u-a-g-e\nWhat are the letters in « Romanian »?\nAnswer:",
        24,
        "Greedy",
        False,
        "Sample 1",
    ],
]


def query(payload):
    print(payload)
    response = requests.request("POST", API_URL, json=payload)
    print(response)
    return json.loads(response.content.decode("utf-8"))


def inference(input_sentence, max_length, sample_or_greedy, raw_text=False, seed=42):
    if sample_or_greedy == "Sample":
        parameters = {
            "max_new_tokens": max_length,
            "top_p": 0.9,
            "do_sample": True,
            "seed": seed,
            "early_stopping": False,
            "length_penalty": 0.0,
            "eos_token_id": None,
        }
    else:
        parameters = {
            "max_new_tokens": max_length,
            "do_sample": False,
            "seed": seed,
            "early_stopping": False,
            "length_penalty": 0.0,
            "eos_token_id": None,
        }

    payload = {"inputs": input_sentence, "parameters": parameters}

    data = query(payload)

    if raw_text:
        return None, data[0]["generated_text"]

    width, height = 3246, 3246
    assets_path = "assets"
    font_mapping = {
        "latin characters (faster)": "DejaVuSans.ttf",
        "complete alphabet (slower)": "GoNotoCurrent.ttf",
    }
    working_dir = Path(__file__).parent.resolve()
    font_path = str(working_dir / font_mapping["complete alphabet (slower)"])
    img_save_path = str(working_dir / "output.jpeg")
    colors = {
        BG_COMP: "#000000",
        PROMPT_VAR: "#FFFFFF",
        GENERATION_VAR: "#FF57A0",
        BOX_COMP: "#120F25",
    }

    new_string = data[0]["generated_text"].split(input_sentence, 1)[1]

    return data[0]["generated_text"]


gr.Interface(
    inference,
    [
        gr.inputs.Textbox(label="Input"),
        gr.inputs.Slider(1, 64, default=32, step=1, label="Tokens to generate"),
        gr.inputs.Radio(
            ["Sample", "Greedy"], label="Sample or greedy", default="Sample"
        ),
        gr.Checkbox(label="Just output raw text"),
        gr.inputs.Radio(
            ["Sample 1", "Sample 2", "Sample 3", "Sample 4", "Sample 5"],
            default="Sample 1",
            label="Sample other generations (only work in 'Sample' mode",
            type="index",
        ),
    ],
    ["text"],
    examples=examples,
    # article=article,
    cache_examples=False,
    title=title,
    description=description,
).launch()