Spaces:
Running
on
T4
Running
on
T4
import time | |
import os | |
import re | |
import torch | |
import gradio as gr | |
import spaces | |
from transformers import AutoFeatureExtractor, AutoTokenizer, WhisperForConditionalGeneration, WhisperProcessor, pipeline | |
from huggingface_hub import model_info | |
try: | |
import flash_attn | |
FLASH_ATTENTION = True | |
except ImportError: | |
FLASH_ATTENTION = False | |
import yt_dlp # Added import for yt-dlp | |
MODEL_NAME = "NbAiLab/nb-whisper-large" | |
lang = "no" | |
logo_path = "/home/angelina/Nedlastinger/Screenshot 2024-10-10 at 13-30-13 Nasjonalbiblioteket — Melkeveien designkontor.png" | |
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None | |
auth_token = os.environ.get("AUTH_TOKEN") or True | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
print(f"Bruker enhet: {device}") | |
def pipe(file, return_timestamps=False): | |
asr = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=28, | |
device=device, | |
token=auth_token, | |
torch_dtype=torch.float16, | |
model_kwargs={"attn_implementation": "flash_attention_2", "num_beams": 5} if FLASH_ATTENTION else {"attn_implementation": "sdpa", "num_beams": 5}, | |
) | |
asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids( | |
language=lang, | |
task="transcribe", | |
no_timestamps=not return_timestamps, | |
) | |
return asr(file, return_timestamps=return_timestamps, batch_size=24) | |
def format_output(text): | |
# Add a newline after ".", "!", ":", or "?" unless part of sequences like "..." | |
text = re.sub(r'(?<!\.)[.!:?](?!\.)', lambda m: m.group() + '\n', text) | |
# Ensure newline after sequences like "..." or other punctuation patterns | |
text = re.sub(r'(\.{3,}|[.!:?])', lambda m: m.group() + '\n\n', text) | |
return text | |
def transcribe(file, return_timestamps=False): | |
if not return_timestamps: | |
text = pipe(file)["text"] | |
formatted_text = format_output(text) | |
else: | |
chunks = pipe(file, return_timestamps=True)["chunks"] | |
text = [] | |
for chunk in chunks: | |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??" | |
end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??" | |
line = f"[{start_time} -> {end_time}] {chunk['text']}" | |
text.append(line) | |
formatted_text = "\n".join(text) | |
return formatted_text | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def yt_transcribe(yt_url, return_timestamps=False): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
ydl_opts = { | |
'format': 'bestaudio/best', | |
'outtmpl': 'audio.%(ext)s', | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'mp3', | |
'preferredquality': '192', | |
}], | |
'quiet': True, | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
ydl.download([yt_url]) | |
text = transcribe("audio.mp3", return_timestamps=return_timestamps) | |
return html_embed_str, text | |
# Lag Gradio-appen uten faner | |
demo = gr.Blocks() | |
with demo: | |
gr.Image(value=logo_path, label="Nasjonalbibliotek Logo", elem_id="logo") | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.components.Audio(sources=['upload', 'microphone'], type="filepath"), | |
gr.components.Checkbox(label="Inkluder tidsstempler"), | |
], | |
outputs="text", | |
title="NB-Whisper", | |
description=( | |
"Transkriber lange lydopptak fra mikrofon eller lydfiler med et enkelt klikk! Demoen bruker den fintunede" | |
f" modellen [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler opp til 30 minutter." | |
), | |
allow_flagging="never", | |
show_submit_button=False, | |
) | |
# Uncomment to add the YouTube transcription interface if needed | |
# yt_transcribe_interface = gr.Interface( | |
# fn=yt_transcribe, | |
# inputs=[ | |
# gr.components.Textbox(lines=1, placeholder="Lim inn URL til en YouTube-video her", label="YouTube URL"), | |
# gr.components.Checkbox(label="Inkluder tidsstempler"), | |
# ], | |
# examples=[["https://www.youtube.com/watch?v=mukeSSa5GKo"]], | |
# outputs=["html", "text"], | |
# title="Whisper Demo: Transkriber YouTube", | |
# description=( | |
# "Transkriber lange YouTube-videoer med et enkelt klikk! Demoen bruker den fintunede modellen:" | |
# f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler av" | |
# " vilkårlig lengde." | |
# ), | |
# allow_flagging="never", | |
# ) | |
# Start demoen uten faner | |
demo.launch(share=share).queue() |