import os import torch import gradio as gr import pytube as pt import spaces from transformers import pipeline from huggingface_hub import model_info try: import flash_attn FLASH_ATTENTION = True except ImportError: FLASH_ATTENTION = False MODEL_NAME = "NbAiLab/nb-whisper-large" lang = "no" share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None auth_token = os.environ.get("AUTH_TOKEN") or True device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") @spaces.GPU(duration=120) def pipe(file, return_timestamps=False): asr = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, token=auth_token, torch_dtype=torch.float16, model_kwargs={"attn_implementation": "flash_attention_2"} if FLASH_ATTENTION else {"attn_implementation": "sdpa"}, ) asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids( language=lang, task="transcribe", no_timestamps=not return_timestamps, ) # asr.model.config.no_timestamps_token_id = asr.tokenizer.encode("<|notimestamps|>", add_special_tokens=False)[0] return asr(file, return_timestamps=return_timestamps, batch_size=24) def transcribe(file, return_timestamps=False): if not return_timestamps: text = pipe(file)["text"] else: chunks = pipe(file, return_timestamps=True)["chunks"] text = [] for chunk in chunks: start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??" end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??" line = f"[{start_time} -> {end_time}] {chunk['text']}" text.append(line) text = "\n".join(text) return text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'