File size: 8,075 Bytes
7f8cb6d
f3c524c
e434571
 
 
6f8dae7
b96b661
86d71e1
27f27c7
 
 
b96b661
 
 
 
 
 
 
 
 
 
 
 
efe8c9c
b96b661
 
 
 
 
efe8c9c
b96b661
 
efe8c9c
b96b661
 
3881c06
 
b96b661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efe8c9c
b96b661
 
 
 
 
 
 
 
 
 
27f27c7
 
 
02e5c28
 
27f27c7
850bf95
e434571
02e5c28
7f8cb6d
6cc56c2
 
 
 
 
 
 
efe8c9c
 
 
850bf95
 
 
 
 
 
 
 
 
 
 
 
7f8cb6d
efe8c9c
 
 
7f8cb6d
efe8c9c
 
 
7f8cb6d
47a0256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdf944c
 
 
6cc56c2
 
2fba648
e7202a7
2fba648
1622ee7
2fba648
 
4583afa
f66705a
 
 
e68002c
7f8cb6d
 
e68002c
9387b3a
 
b96b661
 
efe8c9c
40c7b63
b96b661
 
 
 
 
 
 
40c7b63
b96b661
 
 
 
ad6fb76
 
bdf944c
a0e5730
 
 
b96b661
efe8c9c
6cc56c2
27f27c7
b96b661
7f8cb6d
1c00301
27f27c7
7f8cb6d
39d09bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import gradio as gr
import json
import os
import string 
import re
import torch
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
import fasttext
from huggingface_hub import hf_hub_download

summarization_model_names = [
    "google/bigbird-pegasus-large-arxiv",
    "facebook/bart-large-cnn",
    "google/t5-v1_1-large",
    "sshleifer/distilbart-cnn-12-6",
    "allenai/led-base-16384",
    "google/pegasus-xsum",
    "togethercomputer/LLaMA-2-7B-32K"
]

# Placeholder for the summarizer pipeline, tokenizer, and maximum tokens
summarizer = None
tokenizer_sum = None
max_tokens = None


# Function to load the selected model
def load_summarization_model(model_name):
    global summarizer, tokenizer_sum, max_tokens
    try:
        summarizer = pipeline("summarization", model=model_name, torch_dtype=torch.bfloat16)
        tokenizer_sum = AutoTokenizer.from_pretrained(model_name)
        config = AutoConfig.from_pretrained(model_name)

        if hasattr(config, 'max_position_embeddings'):
            max_tokens = config.max_position_embeddings
        elif hasattr(config, 'n_positions'):
            max_tokens = config.n_positions
        elif hasattr(config, 'd_model'):
            max_tokens = config.d_model  # for T5 models, d_model is a rough proxy
        else:
            max_tokens = "Unknown"
    
        return f"Model {model_name} loaded successfully! Max tokens: {max_tokens}"
    except Exception as e:
        return f"Failed to load model {model_name}. Error: {str(e)}"


def summarize_text(input, min_length, max_length):
    if summarizer is None:
        return "No model loaded!"

    input_tokens = tokenizer_sum.encode(input, return_tensors="pt")
    num_tokens = input_tokens.shape[1]
    if num_tokens > max_tokens:
        return f"Error: The input text has {num_tokens} tokens, which exceeds the maximum allowed {max_tokens} tokens. Please enter shorter text."

    min_summary_length = int(num_tokens * (min_length / 100))
    max_summary_length = int(num_tokens * (max_length / 100))

    output = summarizer(input, min_length=min_summary_length, max_length=max_summary_length)
    return output[0]['summary_text']


model_path = hf_hub_download(repo_id="cis-lmu/glotlid", filename="model.bin")
identification_model = fasttext.load_model(model_path)


def lang_ident(text):
    label, array = identification_model.predict(text)
    label = get_name(label[0].split('__')[-1].replace('_Hans', '_Hani').replace('_Hant', '_Hani'))
    return {"language" : label, "score" : array[0]}

pretrained_model: str = "facebook/m2m100_1.2B"
cache_dir: str = "models/"

tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
translation_model = M2M100ForConditionalGeneration.from_pretrained(
        pretrained_model, cache_dir=cache_dir)

#transcription = pipeline("automatic-speech-recognition", model= "openai/whisper-base")
#clasification = pipeline("audio-classification",model="anton-l/xtreme_s_xlsr_300m_minds14",)

def language_names(json_path):
    with open(json_path, 'r') as json_file:
        data = json.load(json_file)
    return data

label2name = language_names("assetslanguage_names.json")

def get_name(label):
    """Get the name of language from label"""
    iso_3 = label.split('_')[0]
    name = label2name[iso_3]
    return name

#def audio_a_text(audio):
 # text = transcription(audio)["text"]
  #return text

#def text_to_sentimient(audio):
 #   #text = transcription(audio)["text"]
  #  return clasification(audio)

lang_id = {
    "Afrikaans": "af",
    "Amharic": "am",
    "Arabic": "ar",
    "Asturian": "ast",
    "Azerbaijani": "az",
    "Bashkir": "ba",
    "Belarusian": "be",
    "Bulgarian": "bg",
    "Bengali": "bn",
    "Breton": "br",
    "Bosnian": "bs",
    "Catalan": "ca",
    "Cebuano": "ceb",
    "Czech": "cs",
    "Welsh": "cy",
    "Danish": "da",
    "German": "de",
    "Greeek": "el",
    "English": "en",
    "Spanish": "es",
    "Estonian": "et",
    "Persian": "fa",
    "Fulah": "ff",
    "Finnish": "fi",
    "French": "fr",
    "Western Frisian": "fy",
    "Irish": "ga",
    "Gaelic": "gd",
    "Galician": "gl",
    "Gujarati": "gu",
    "Hausa": "ha",
    "Hebrew": "he",
    "Hindi": "hi",
    "Croatian": "hr",
    "Haitian": "ht",
    "Hungarian": "hu",
    "Armenian": "hy",
    "Indonesian": "id",
    "Igbo": "ig",
    "Iloko": "ilo",
    "Icelandic": "is",
    "Italian": "it",
    "Japanese": "ja",
    "Javanese": "jv",
    "Georgian": "ka",
    "Kazakh": "kk",
    "Central Khmer": "km",
    "Kannada": "kn",
    "Korean": "ko",
    "Luxembourgish": "lb",
    "Ganda": "lg",
    "Lingala": "ln",
    "Lao": "lo",
    "Lithuanian": "lt",
    "Latvian": "lv",
    "Malagasy": "mg",
    "Macedonian": "mk",
    "Malayalam": "ml",
    "Mongolian": "mn",
    "Marathi": "mr",
    "Malay": "ms",
    "Burmese": "my",
    "Nepali": "ne",
    "Dutch": "nl",
    "Norwegian": "no",
    "Northern Sotho": "ns",
    "Occitan": "oc",
    "Oriya": "or",
    "Panjabi": "pa",
    "Polish": "pl",
    "Pushto": "ps",
    "Portuguese": "pt",
    "Romanian": "ro",
    "Russian": "ru",
    "Sindhi": "sd",
    "Sinhala": "si",
    "Slovak": "sk",
    "Slovenian": "sl",
    "Somali": "so",
    "Albanian": "sq",
    "Serbian": "sr",
    "Swati": "ss",
    "Sundanese": "su",
    "Swedish": "sv",
    "Swahili": "sw",
    "Tamil": "ta",
    "Thai": "th",
    "Tagalog": "tl",
    "Tswana": "tn",
    "Turkish": "tr",
    "Ukrainian": "uk",
    "Urdu": "ur",
    "Uzbek": "uz",
    "Vietnamese": "vi",
    "Wolof": "wo",
    "Xhosa": "xh",
    "Yiddish": "yi",
    "Yoruba": "yo",
    "Chinese": "zh",
    "Zulu": "zu",
}
def translation_text(source_lang, target_lang, user_input):
    src_lang = lang_id[source_lang]
    trg_lang = lang_id[target_lang]
    tokenizer.src_lang = src_lang
    with torch.no_grad():

        encoded_input = tokenizer(user_input, return_tensors="pt")

        generated_tokens = translation_model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang))
        translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
    return translated_text

def print_s(source_lang, target_lang, text0):
    print(source_lang)
    return lang_id[source_lang], lang_id[target_lang], text0
demo = gr.Blocks(title = "Text Analyzer")

with demo:
  
  text0 = gr.Textbox(label = "Enter text here....")
  text = gr.Textbox(label = "output of every action will be reflected in this block....")
  #gr.Markdown("Speech analyzer")
  #audio = gr.Audio(type="filepath", label = "Upload a file")
    
  model_dropdown = gr.Dropdown(choices = summarization_model_names, label="Choose a model", value="sshleifer/distilbart-cnn-12-6")
  load_message = gr.Textbox(label="Load Status", interactive=False) 
  b1 = gr.Button("Load Model")
  min_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Minimum Summary Length (%)", value=10)
  max_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Maximum Summary Length (%)", value=20) 

  summarize_button = gr.Button("Summarize Text")

  b1.click(fn=load_summarization_model, inputs=model_dropdown, outputs=load_message)
  summarize_button.click(fn=summarize_text, inputs=[text0, min_length_slider, max_length_slider],
                           outputs=text)
    
  
  source_lang = gr.Dropdown(label="Source lang", choices=list(lang_id.keys()), value=list(lang_id.keys())[0])
  target_lang = gr.Dropdown(label="target lang", choices=list(lang_id.keys()), value=list(lang_id.keys())[0])
  
  #gr.Examples(examples = list(lang_id.keys()),
   #             inputs=[
    #                source_lang])
  #b1 = gr.Button("convert to text")
    
  b3 = gr.Button("translate")
  b3.click(translation_text, inputs = [source_lang, target_lang, text0], outputs = text)
  #b1.click(audio_a_text, inputs=audio, outputs=text)

  b2 = gr.Button("identification of language")
  b2.click(lang_ident,inputs  = text0, outputs=text)

demo.launch()