Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load the model and tokenizer | |
model_path = 'LLM4Binary/llm4decompile-1.3b-v1.5' # V1.5 Model | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16).cuda() | |
# Define the inference function | |
def generate_response(input_text, temperature, top_k, top_p): | |
before = f"# This is the assembly code:\n"#prompt | |
after = "\n# What is the source code?\n"#prompt | |
input_func = before+input_text.strip()+after | |
inputs = tokenizer(input_func, return_tensors="pt") | |
outputs = model.generate( | |
**inputs, | |
max_length=512, # Adjust this if needed | |
do_sample=True, | |
top_k=int(top_k), | |
top_p=float(top_p), | |
temperature=float(temperature) | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Create a Gradio interface with sliders | |
interface = gr.Interface( | |
fn=generate_response, | |
inputs=[ | |
gr.Textbox(lines=5, placeholder="Enter your input text here...", label="Input Text"), | |
gr.Slider(0.1, 2.0, value=0.0, step=0.1, label="Temperature"), | |
gr.Slider(1, 100, value=10, step=1, label="Top-k"), | |
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") | |
], | |
outputs=gr.Textbox(label="Generated Response"), | |
title="LLM4Binary Interactive Demo", | |
description="Adjust the sliders for temperature, top-k, and top-p to customize the model's response." | |
) | |
# Launch the Gradio app | |
interface.launch() | |