Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.0, maximum=4.0, value=0.0, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model_path = 'LLM4Binary/llm4decompile-1.3b-v1.5' # V1.5 Model
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16).cuda()
|
9 |
+
|
10 |
+
# Define the inference function
|
11 |
+
def generate_response(input_text, temperature, top_k, top_p):
|
12 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
13 |
+
outputs = model.generate(
|
14 |
+
**inputs,
|
15 |
+
max_length=512, # Adjust this if needed
|
16 |
+
do_sample=True,
|
17 |
+
top_k=int(top_k),
|
18 |
+
top_p=float(top_p),
|
19 |
+
temperature=float(temperature)
|
20 |
+
)
|
21 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
22 |
+
return response
|
23 |
+
|
24 |
+
# Create a Gradio interface with sliders
|
25 |
+
interface = gr.Interface(
|
26 |
+
fn=generate_response,
|
27 |
+
inputs=[
|
28 |
+
gr.Textbox(lines=5, placeholder="Enter your input text here...", label="Input Text"),
|
29 |
+
gr.Slider(0.1, 2.0, value=0.0, step=0.1, label="Temperature"),
|
30 |
+
gr.Slider(1, 100, value=10, step=1, label="Top-k"),
|
31 |
+
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
],
|
33 |
+
outputs=gr.Textbox(label="Generated Response"),
|
34 |
+
title="LLM4Binary Interactive Demo",
|
35 |
+
description="Adjust the sliders for temperature, top-k, and top-p to customize the model's response."
|
36 |
)
|
37 |
|
38 |
+
# Launch the Gradio app
|
39 |
+
interface.launch()
|
|