Neo111x commited on
Commit
4191ffb
·
verified ·
1 Parent(s): 6b00690

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -60
app.py CHANGED
@@ -1,64 +1,39 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Neo111x/falcon3-decompiler-3b-v1.5")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.0, maximum=4.0, value=0.0, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+
5
+ # Load the model and tokenizer
6
+ model_path = 'LLM4Binary/llm4decompile-1.3b-v1.5' # V1.5 Model
7
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
8
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16).cuda()
9
+
10
+ # Define the inference function
11
+ def generate_response(input_text, temperature, top_k, top_p):
12
+ inputs = tokenizer(input_text, return_tensors="pt")
13
+ outputs = model.generate(
14
+ **inputs,
15
+ max_length=512, # Adjust this if needed
16
+ do_sample=True,
17
+ top_k=int(top_k),
18
+ top_p=float(top_p),
19
+ temperature=float(temperature)
20
+ )
21
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
22
+ return response
23
+
24
+ # Create a Gradio interface with sliders
25
+ interface = gr.Interface(
26
+ fn=generate_response,
27
+ inputs=[
28
+ gr.Textbox(lines=5, placeholder="Enter your input text here...", label="Input Text"),
29
+ gr.Slider(0.1, 2.0, value=0.0, step=0.1, label="Temperature"),
30
+ gr.Slider(1, 100, value=10, step=1, label="Top-k"),
31
+ gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ],
33
+ outputs=gr.Textbox(label="Generated Response"),
34
+ title="LLM4Binary Interactive Demo",
35
+ description="Adjust the sliders for temperature, top-k, and top-p to customize the model's response."
36
  )
37
 
38
+ # Launch the Gradio app
39
+ interface.launch()