STT-Swedish / app.py
Neprox's picture
Add translation part
142a301
raw
history blame
4.64 kB
import os
import gradio as gr
from transformers import pipeline
from pytube import YouTube
from datasets import Dataset, Audio
from moviepy.editor import AudioFileClip
import googletrans
from googletrans import Translator
pipe = pipeline(model="Neprox/model")
translator = Translator()
# Get languages available for translation
languages = []
for code, name in googletrans.LANGUAGES.items():
languages.append((code, name.capitalize()))
def download_from_youtube(url):
"""
Downloads the video from the given YouTube URL and returns the path to the audio file.
"""
streams = YouTube(url).streams.filter(only_audio=True, file_extension='mp4')
fpath = streams.first().download()
return fpath
def get_timestamp(seconds):
"""
Creates %M:%S timestamp from seconds.
"""
minutes = int(seconds / 60)
seconds = int(seconds % 60)
return f"{str(minutes).zfill(2)}:{str(seconds).zfill(2)}"
def divide_into_30s_segments(audio_fpath, seconds_max):
"""
Divides the audio file into 30s segments and returns the paths to the segments and the start times of the segments.
:param audio_fpath: Path to the audio file.
:param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated.
"""
if not os.path.exists("segmented_audios"):
os.makedirs("segmented_audios")
sound = AudioFileClip(audio_fpath)
n_full_segments = int(sound.duration / 30)
len_last_segment = sound.duration % 30
max_segments = int(seconds_max / 30)
if n_full_segments > max_segments:
n_full_segments = max_segments
len_last_segment = 0
segment_paths = []
segment_start_times = []
segments_available = n_full_segments + 1
for i in range(min(segments_available, max_segments)):
start = i * 30
# Skip last segment if it is smaller than two seconds
is_last_segment = i == n_full_segments
if is_last_segment and not len_last_segment > 2:
continue
elif is_last_segment:
end = start + len_last_segment
else:
end = (i + 1) * 30
segment_path = os.path.join("segmented_audios", f"segment_{i}.wav")
segment = sound.subclip(start, end)
segment.write_audiofile(segment_path)
segment_paths.append(segment_path)
segment_start_times.append(start)
return segment_paths, segment_start_times
def get_translation(text, dest="en"):
"""
Translates the given Swedish text to the language specified.
"""
dest_text = dest[0]
result = translator.translate(text, dest_text, 'sv')
return result.text
def translate(audio, url, seconds_max, dest_language):
"""
Translates a YouTube video if a url is specified and returns the transcription.
If not url is specified, it translates the audio file as passed by Gradio.
:param audio: Audio file as passed by Gradio. Only used if no url is specified.
:param url: URL of the YouTube video to translate.
:param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated.
"""
if url:
fpath = download_from_youtube(url)
segment_paths, segment_start_times = divide_into_30s_segments(fpath, seconds_max)
audio_dataset = Dataset.from_dict({"audio": segment_paths}).cast_column("audio", Audio(sampling_rate=16000))
pred = pipe(audio_dataset["audio"])
text = ""
n_segments = len(segment_start_times)
for i, (seconds, output) in enumerate(zip(segment_start_times, pred)):
text += f"[Segment {i+1}/{n_segments}, start time {get_timestamp(seconds)}]\n"
text += f"{output['text']}\n"
text += f"[Translation ({dest_language})]\n"
text += f"{get_translation(output['text'], dest_language)}\n\n"
return text
else:
text = pipe(audio)["text"]
return text
iface = gr.Interface(
fn=translate,
inputs=[
gr.Audio(source="microphone", type="filepath", label="Translate from Microphone"),
gr.Text(max_lines=1, placeholder="Enter YouTube Link with Swedish speech to be translated", label="Translate from YouTube URL"),
gr.Slider(minimum=30, maximum=300, value=30, step=30, label="Number of seconds to translate from YouTube URL"),
gr.Dropdown(languages, label="Destination language")
],
outputs="text",
title="Whisper Small Swedish",
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.",
)
iface.launch()