Spaces:
Runtime error
Runtime error
Add slider
Browse files
app.py
CHANGED
@@ -6,14 +6,13 @@ from datasets import Dataset, Audio
|
|
6 |
from moviepy.editor import AudioFileClip
|
7 |
|
8 |
pipe = pipeline(model="Neprox/model")
|
9 |
-
MAX_SEGMENTS = 10 # 5 minutes
|
10 |
|
11 |
def download_from_youtube(url):
|
12 |
streams = YouTube(url).streams.filter(only_audio=True, file_extension='mp4')
|
13 |
fpath = streams.first().download()
|
14 |
return fpath
|
15 |
|
16 |
-
def divide_into_30s_segments(audio_fpath):
|
17 |
if not os.path.exists("segmented_audios"):
|
18 |
os.makedirs("segmented_audios")
|
19 |
|
@@ -21,14 +20,16 @@ def divide_into_30s_segments(audio_fpath):
|
|
21 |
n_full_segments = int(sound.duration / 30)
|
22 |
len_last_segment = sound.duration % 30
|
23 |
|
24 |
-
|
25 |
-
|
|
|
26 |
len_last_segment = 0
|
27 |
|
28 |
segment_paths = []
|
29 |
segment_start_times = []
|
30 |
|
31 |
-
|
|
|
32 |
start = i * 30
|
33 |
|
34 |
# Skip last segment if it is smaller than two seconds
|
@@ -49,10 +50,10 @@ def divide_into_30s_segments(audio_fpath):
|
|
49 |
return segment_paths, segment_start_times
|
50 |
|
51 |
|
52 |
-
def transcribe(audio, url):
|
53 |
if url:
|
54 |
fpath = download_from_youtube(url)
|
55 |
-
segment_paths, segment_start_times = divide_into_30s_segments(fpath)
|
56 |
|
57 |
audio_dataset = Dataset.from_dict({"audio": segment_paths}).cast_column("audio", Audio())
|
58 |
print(audio_dataset)
|
@@ -70,7 +71,8 @@ iface = gr.Interface(
|
|
70 |
fn=transcribe,
|
71 |
inputs=[
|
72 |
gr.Audio(source="microphone", type="filepath"),
|
73 |
-
gr.Text(max_lines=1, placeholder="Enter YouTube Link with Swedish speech to be transcribed")
|
|
|
74 |
],
|
75 |
outputs="text",
|
76 |
title="Whisper Small Swedish",
|
|
|
6 |
from moviepy.editor import AudioFileClip
|
7 |
|
8 |
pipe = pipeline(model="Neprox/model")
|
|
|
9 |
|
10 |
def download_from_youtube(url):
|
11 |
streams = YouTube(url).streams.filter(only_audio=True, file_extension='mp4')
|
12 |
fpath = streams.first().download()
|
13 |
return fpath
|
14 |
|
15 |
+
def divide_into_30s_segments(audio_fpath, seconds_max):
|
16 |
if not os.path.exists("segmented_audios"):
|
17 |
os.makedirs("segmented_audios")
|
18 |
|
|
|
20 |
n_full_segments = int(sound.duration / 30)
|
21 |
len_last_segment = sound.duration % 30
|
22 |
|
23 |
+
max_segments = int(seconds_max / 30)
|
24 |
+
if n_full_segments > max_segments:
|
25 |
+
n_full_segments = max_segments
|
26 |
len_last_segment = 0
|
27 |
|
28 |
segment_paths = []
|
29 |
segment_start_times = []
|
30 |
|
31 |
+
segments_available = n_full_segments + 1
|
32 |
+
for i in range(min(segments_available, max_segments)):
|
33 |
start = i * 30
|
34 |
|
35 |
# Skip last segment if it is smaller than two seconds
|
|
|
50 |
return segment_paths, segment_start_times
|
51 |
|
52 |
|
53 |
+
def transcribe(audio, url, seconds_max):
|
54 |
if url:
|
55 |
fpath = download_from_youtube(url)
|
56 |
+
segment_paths, segment_start_times = divide_into_30s_segments(fpath, seconds_max)
|
57 |
|
58 |
audio_dataset = Dataset.from_dict({"audio": segment_paths}).cast_column("audio", Audio())
|
59 |
print(audio_dataset)
|
|
|
71 |
fn=transcribe,
|
72 |
inputs=[
|
73 |
gr.Audio(source="microphone", type="filepath"),
|
74 |
+
gr.Text(max_lines=1, placeholder="Enter YouTube Link with Swedish speech to be transcribed", label="YouTube URL")
|
75 |
+
gr.Slider(minimum=30, maximum=300, value=30, step=30, label="Number of seconds to transcribe")
|
76 |
],
|
77 |
outputs="text",
|
78 |
title="Whisper Small Swedish",
|