import os import gradio as gr from transformers import pipeline from pytube import YouTube from datasets import Dataset, Audio from moviepy.editor import AudioFileClip import googletrans from googletrans import Translator pipe = pipeline(model="Neprox/model") translator = Translator() # Get languages available for translation languages = [] for code, name in googletrans.LANGUAGES.items(): language = f"{name.capitalize()} ({code})" languages.append(language) def download_from_youtube(url): """ Downloads the video from the given YouTube URL and returns the path to the audio file. """ streams = YouTube(url).streams.filter(only_audio=True, file_extension='mp4') fpath = streams.first().download() return fpath def get_timestamp(seconds): """ Creates %M:%S timestamp from seconds. """ minutes = int(seconds / 60) seconds = int(seconds % 60) return f"{str(minutes).zfill(2)}:{str(seconds).zfill(2)}" def divide_into_30s_segments(audio_fpath, seconds_max): """ Divides the audio file into 30s segments and returns the paths to the segments and the start times of the segments. :param audio_fpath: Path to the audio file. :param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated. """ if not os.path.exists("segmented_audios"): os.makedirs("segmented_audios") sound = AudioFileClip(audio_fpath) n_full_segments = int(sound.duration / 30) len_last_segment = sound.duration % 30 max_segments = int(seconds_max / 30) if n_full_segments > max_segments: n_full_segments = max_segments len_last_segment = 0 segment_paths = [] segment_start_times = [] segments_available = n_full_segments + 1 for i in range(min(segments_available, max_segments)): start = i * 30 # Skip last segment if it is smaller than two seconds is_last_segment = i == n_full_segments if is_last_segment and not len_last_segment > 2: continue elif is_last_segment: end = start + len_last_segment else: end = (i + 1) * 30 segment_path = os.path.join("segmented_audios", f"segment_{i}.wav") segment = sound.subclip(start, end) segment.write_audiofile(segment_path) segment_paths.append(segment_path) segment_start_times.append(start) return segment_paths, segment_start_times def get_translation(text, dest="English (en)"): """ Translates the given Swedish text to the language specified. """ lang_code = dest.split(" ")[-1][1:-1] result = translator.translate(text, lang_code, 'sv') return result.text def translate(audio, url, seconds_max, dest_language): """ Translates a YouTube video if a url is specified and returns the transcription. If not url is specified, it translates the audio file as passed by Gradio. :param audio: Audio file as passed by Gradio. Only used if no url is specified. :param url: URL of the YouTube video to translate. :param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated. """ if url: fpath = download_from_youtube(url) segment_paths, segment_start_times = divide_into_30s_segments(fpath, seconds_max) audio_dataset = Dataset.from_dict({"audio": segment_paths}).cast_column("audio", Audio(sampling_rate=16000)) pred = pipe(audio_dataset["audio"]) text = "" n_segments = len(segment_start_times) for i, (seconds, output) in enumerate(zip(segment_start_times, pred)): text += f"[Segment {i+1}/{n_segments}, start time {get_timestamp(seconds)}]\n" text += f"{output['text']}\n" text += f"[Translation ({dest_language})]\n" text += f"{get_translation(output['text'], dest_language)}\n\n" return text else: text = pipe(audio)["text"] return text iface = gr.Interface( fn=translate, inputs=[ gr.Audio(source="microphone", type="filepath", label="Translate from Microphone"), gr.Text(max_lines=1, placeholder="Enter YouTube Link with Swedish speech to be translated", label="Translate from YouTube URL"), gr.Slider(minimum=30, maximum=300, value=30, step=30, label="Number of seconds to translate from YouTube URL"), gr.Dropdown(languages, label="Destination language") ], outputs="text", title="Whisper Small Swedish", description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.", ) iface.launch()