Spaces:
Runtime error
Runtime error
File size: 1,145 Bytes
789ee84 bc5e1ec 56d2483 789ee84 56d2483 789ee84 56d2483 789ee84 56d2483 789ee84 56d2483 789ee84 56d2483 789ee84 56d2483 789ee84 56d2483 789ee84 56d2483 789ee84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import os
import gradio as gr
import torch
from PIL import Image
from torchvision.transforms import ToTensor, ToPILImage
from torchvision import models
# Load the R-ESRGAN Anime model (you need to set up this model properly)
model = torch.hub.load('xinntao/Real-ESRGAN', 'restorer', model='R-ESRGAN_Anime_X6')
def upscale_image(image, scale_factor):
# Ensure image is in PIL format
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Upscale using the model
with torch.no_grad():
upscaled_image = model(image, scale=scale_factor)
return upscaled_image
# Create Gradio interface
iface = gr.Interface(
fn=upscale_image,
inputs=[
gr.inputs.Image(type="pil", label="Input Image"),
gr.inputs.Slider(minimum=1, maximum=4, step=1, default=2, label="Scale Factor")
],
outputs=gr.outputs.Image(type="pil", label="Upscaled Image"),
title="R-ESRGAN Anime 6B Image Upscaler",
description="Upload an image and select a scale factor to upscale the image using R-ESRGAN Anime 6B model."
)
# Launch the Gradio app
if __name__ == "__main__":
iface.launch() |