Spaces:
Runtime error
Runtime error
from typing import Any, List, Callable | |
import cv2 | |
import insightface | |
import threading | |
import DeepFakeAI.globals | |
import DeepFakeAI.processors.frame.core as frame_processors | |
from DeepFakeAI import wording | |
from DeepFakeAI.core import update_status | |
from DeepFakeAI.face_analyser import get_one_face, get_many_faces, find_similar_faces | |
from DeepFakeAI.face_reference import get_face_reference, set_face_reference | |
from DeepFakeAI.typing import Face, Frame | |
from DeepFakeAI.utilities import conditional_download, resolve_relative_path, is_image, is_video | |
FRAME_PROCESSOR = None | |
THREAD_LOCK = threading.Lock() | |
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_SWAPPER' | |
def get_frame_processor() -> Any: | |
global FRAME_PROCESSOR | |
with THREAD_LOCK: | |
if FRAME_PROCESSOR is None: | |
model_path = resolve_relative_path('../.assets/models/inswapper_128.onnx') | |
FRAME_PROCESSOR = insightface.model_zoo.get_model(model_path, providers = DeepFakeAI.globals.execution_providers) | |
return FRAME_PROCESSOR | |
def clear_frame_processor() -> None: | |
global FRAME_PROCESSOR | |
FRAME_PROCESSOR = None | |
def pre_check() -> bool: | |
download_directory_path = resolve_relative_path('../.assets/models') | |
conditional_download(download_directory_path, ['https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/inswapper_128.onnx']) | |
return True | |
def pre_process() -> bool: | |
if not is_image(DeepFakeAI.globals.source_path): | |
update_status(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME) | |
return False | |
elif not get_one_face(cv2.imread(DeepFakeAI.globals.source_path)): | |
update_status(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME) | |
return False | |
if not is_image(DeepFakeAI.globals.target_path) and not is_video(DeepFakeAI.globals.target_path): | |
update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME) | |
return False | |
return True | |
def post_process() -> None: | |
clear_frame_processor() | |
def swap_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame: | |
return get_frame_processor().get(temp_frame, target_face, source_face, paste_back = True) | |
def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame: | |
if 'reference' in DeepFakeAI.globals.face_recognition: | |
similar_faces = find_similar_faces(temp_frame, reference_face, DeepFakeAI.globals.reference_face_distance) | |
if similar_faces: | |
for similar_face in similar_faces: | |
temp_frame = swap_face(source_face, similar_face, temp_frame) | |
if 'many' in DeepFakeAI.globals.face_recognition: | |
many_faces = get_many_faces(temp_frame) | |
if many_faces: | |
for target_face in many_faces: | |
temp_frame = swap_face(source_face, target_face, temp_frame) | |
return temp_frame | |
def process_frames(source_path : str, temp_frame_paths : List[str], update: Callable[[], None]) -> None: | |
source_face = get_one_face(cv2.imread(source_path)) | |
reference_face = get_face_reference() if 'reference' in DeepFakeAI.globals.face_recognition else None | |
for temp_frame_path in temp_frame_paths: | |
temp_frame = cv2.imread(temp_frame_path) | |
result_frame = process_frame(source_face, reference_face, temp_frame) | |
cv2.imwrite(temp_frame_path, result_frame) | |
if update: | |
update() | |
def process_image(source_path : str, target_path : str, output_path : str) -> None: | |
source_face = get_one_face(cv2.imread(source_path)) | |
target_frame = cv2.imread(target_path) | |
reference_face = get_one_face(target_frame, DeepFakeAI.globals.reference_face_position) if 'reference' in DeepFakeAI.globals.face_recognition else None | |
result_frame = process_frame(source_face, reference_face, target_frame) | |
cv2.imwrite(output_path, result_frame) | |
def process_video(source_path : str, temp_frame_paths : List[str]) -> None: | |
conditional_set_face_reference(temp_frame_paths) | |
frame_processors.process_video(source_path, temp_frame_paths, process_frames) | |
def conditional_set_face_reference(temp_frame_paths : List[str]) -> None: | |
if 'reference' in DeepFakeAI.globals.face_recognition and not get_face_reference(): | |
reference_frame = cv2.imread(temp_frame_paths[DeepFakeAI.globals.reference_frame_number]) | |
reference_face = get_one_face(reference_frame, DeepFakeAI.globals.reference_face_position) | |
set_face_reference(reference_face) | |