Spaces:
Runtime error
Runtime error
from time import sleep | |
from typing import Any, Dict, Tuple, List, Optional | |
import cv2 | |
import gradio | |
import DeepFakeAI.globals | |
from DeepFakeAI import wording | |
from DeepFakeAI.capturer import get_video_frame, get_video_frame_total | |
from DeepFakeAI.face_analyser import get_one_face | |
from DeepFakeAI.face_reference import get_face_reference, set_face_reference | |
from DeepFakeAI.predictor import predict_frame | |
from DeepFakeAI.processors.frame.core import load_frame_processor_module | |
from DeepFakeAI.typing import Frame | |
from DeepFakeAI.uis import core as ui | |
from DeepFakeAI.uis.typing import ComponentName, Update | |
from DeepFakeAI.utilities import is_video, is_image | |
PREVIEW_IMAGE : Optional[gradio.Image] = None | |
PREVIEW_FRAME_SLIDER : Optional[gradio.Slider] = None | |
def render() -> None: | |
global PREVIEW_IMAGE | |
global PREVIEW_FRAME_SLIDER | |
with gradio.Box(): | |
preview_image_args: Dict[str, Any] = { | |
'label': wording.get('preview_image_label') | |
} | |
preview_frame_slider_args: Dict[str, Any] = { | |
'label': wording.get('preview_frame_slider_label'), | |
'step': 1, | |
'visible': False | |
} | |
if is_image(DeepFakeAI.globals.target_path): | |
target_frame = cv2.imread(DeepFakeAI.globals.target_path) | |
preview_frame = extract_preview_frame(target_frame) | |
preview_image_args['value'] = ui.normalize_frame(preview_frame) | |
if is_video(DeepFakeAI.globals.target_path): | |
temp_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) | |
preview_frame = extract_preview_frame(temp_frame) | |
preview_image_args['value'] = ui.normalize_frame(preview_frame) | |
preview_image_args['visible'] = True | |
preview_frame_slider_args['value'] = DeepFakeAI.globals.reference_frame_number | |
preview_frame_slider_args['maximum'] = get_video_frame_total(DeepFakeAI.globals.target_path) | |
preview_frame_slider_args['visible'] = True | |
PREVIEW_IMAGE = gradio.Image(**preview_image_args) | |
PREVIEW_FRAME_SLIDER = gradio.Slider(**preview_frame_slider_args) | |
ui.register_component('preview_frame_slider', PREVIEW_FRAME_SLIDER) | |
def listen() -> None: | |
PREVIEW_FRAME_SLIDER.change(update, inputs = PREVIEW_FRAME_SLIDER, outputs = [ PREVIEW_IMAGE, PREVIEW_FRAME_SLIDER ]) | |
update_component_names : List[ComponentName] =\ | |
[ | |
'source_file', | |
'target_file', | |
'face_recognition_dropdown', | |
'reference_face_distance_slider', | |
'frame_processors_checkbox_group' | |
] | |
for component_name in update_component_names: | |
component = ui.get_component(component_name) | |
if component: | |
component.change(update, inputs = PREVIEW_FRAME_SLIDER, outputs = [ PREVIEW_IMAGE, PREVIEW_FRAME_SLIDER ]) | |
select_component_names : List[ComponentName] =\ | |
[ | |
'reference_face_position_gallery', | |
'face_analyser_direction_dropdown', | |
'face_analyser_age_dropdown', | |
'face_analyser_gender_dropdown' | |
] | |
for component_name in select_component_names: | |
component = ui.get_component(component_name) | |
if component: | |
component.select(update, inputs = PREVIEW_FRAME_SLIDER, outputs = [ PREVIEW_IMAGE, PREVIEW_FRAME_SLIDER ]) | |
def update(frame_number : int = 0) -> Tuple[Update, Update]: | |
sleep(0.1) | |
if is_image(DeepFakeAI.globals.target_path): | |
target_frame = cv2.imread(DeepFakeAI.globals.target_path) | |
preview_frame = extract_preview_frame(target_frame) | |
return gradio.update(value = ui.normalize_frame(preview_frame)), gradio.update(value = None, maximum = None, visible = False) | |
if is_video(DeepFakeAI.globals.target_path): | |
DeepFakeAI.globals.reference_frame_number = frame_number | |
video_frame_total = get_video_frame_total(DeepFakeAI.globals.target_path) | |
temp_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) | |
preview_frame = extract_preview_frame(temp_frame) | |
return gradio.update(value = ui.normalize_frame(preview_frame)), gradio.update(maximum = video_frame_total, visible = True) | |
return gradio.update(value = None), gradio.update(value = None, maximum = None, visible = False) | |
def extract_preview_frame(temp_frame : Frame) -> Frame: | |
if predict_frame(temp_frame): | |
return cv2.GaussianBlur(temp_frame, (99, 99), 0) | |
source_face = get_one_face(cv2.imread(DeepFakeAI.globals.source_path)) if DeepFakeAI.globals.source_path else None | |
temp_frame = reduce_preview_frame(temp_frame) | |
if 'reference' in DeepFakeAI.globals.face_recognition and not get_face_reference(): | |
reference_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) | |
reference_face = get_one_face(reference_frame, DeepFakeAI.globals.reference_face_position) | |
set_face_reference(reference_face) | |
reference_face = get_face_reference() if 'reference' in DeepFakeAI.globals.face_recognition else None | |
for frame_processor in DeepFakeAI.globals.frame_processors: | |
frame_processor_module = load_frame_processor_module(frame_processor) | |
if frame_processor_module.pre_process(): | |
temp_frame = frame_processor_module.process_frame( | |
source_face, | |
reference_face, | |
temp_frame | |
) | |
return temp_frame | |
def reduce_preview_frame(temp_frame : Frame, max_height : int = 480) -> Frame: | |
height, width = temp_frame.shape[:2] | |
if height > max_height: | |
scale = max_height / height | |
max_width = int(width * scale) | |
temp_frame = cv2.resize(temp_frame, (max_width, max_height)) | |
return temp_frame | |