BLIP_mock1 / app.py
NickoSELI's picture
Create app.py
535a03e verified
raw
history blame
1.2 kB
import gradio as gr
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
import torch
# Initialize BLIP model and processor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
def caption_image(image):
inputs = processor(images=image, return_tensors="pt").to(device)
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
def process_image(image):
# Convert the input image to PIL Image
image = Image.fromarray(image)
# Get the caption
caption = caption_image(image)
return caption
# Create Gradio Interface
interface = gr.Interface(
fn=process_image,
inputs=gr.inputs.Image(type="numpy", label="Upload Image"),
outputs=gr.outputs.Textbox(label="Caption"),
title="BLIP Image Captioning",
description="Upload an image to get a caption generated by the BLIP model."
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()