# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Shared architecture blocks.""" from typing import Callable import numpy as np import torch import torch.nn as nn from ADD.th_utils.ops import bias_act class ResidualBlock(nn.Module): def __init__(self, fn: Callable): super().__init__() self.fn = fn def forward(self, x: torch.Tensor) -> torch.Tensor: return (self.fn(x) + x) / np.sqrt(2) class FullyConnectedLayer(nn.Module): def __init__( self, in_features: int, # Number of input features. out_features: int, # Number of output features. bias: bool = True, # Apply additive bias before the activation function? activation: str = 'linear', # Activation function: 'relu', 'lrelu', etc. lr_multiplier: float = 1.0, # Learning rate multiplier. weight_init: float = 1.0, # Initial standard deviation of the weight tensor. bias_init: float = 0.0, # Initial value for the additive bias. ): super().__init__() self.in_features = in_features self.out_features = out_features self.activation = activation self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) * (weight_init / lr_multiplier)) bias_init = np.broadcast_to(np.asarray(bias_init, dtype=np.float32), [out_features]) self.bias = torch.nn.Parameter(torch.from_numpy(bias_init / lr_multiplier)) if bias else None self.weight_gain = lr_multiplier / np.sqrt(in_features) self.bias_gain = lr_multiplier def forward(self, x: torch.Tensor) -> torch.Tensor: w = self.weight.to(x.dtype) * self.weight_gain b = self.bias if b is not None: b = b.to(x.dtype) if self.bias_gain != 1: b = b * self.bias_gain if self.activation == 'linear' and b is not None: x = torch.addmm(b.unsqueeze(0), x, w.t()) else: x = x.matmul(w.t()) x = bias_act.bias_act(x, b, act=self.activation) return x def extra_repr(self) -> str: return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}' class MLP(nn.Module): def __init__( self, features_list: list[int], # Number of features in each layer of the MLP. activation: str = 'linear', # Activation function: 'relu', 'lrelu', etc. lr_multiplier: float = 1.0, # Learning rate multiplier. linear_out: bool = False # Use the 'linear' activation function for the output layer? ): super().__init__() num_layers = len(features_list) - 1 self.num_layers = num_layers self.out_dim = features_list[-1] for idx in range(num_layers): in_features = features_list[idx] out_features = features_list[idx + 1] if linear_out and idx == num_layers-1: activation = 'linear' layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier) setattr(self, f'fc{idx}', layer) def forward(self, x: torch.Tensor) -> torch.Tensor: ''' if x is sequence of tokens, shift tokens to batch and apply MLP to all''' shift2batch = (x.ndim == 3) if shift2batch: B, K, C = x.shape x = x.flatten(0,1) for idx in range(self.num_layers): layer = getattr(self, f'fc{idx}') x = layer(x) if shift2batch: x = x.reshape(B, K, -1) return x