Spaces:
Running
on
Zero
Running
on
Zero
#Importing required libraries | |
import spaces | |
import gradio as gr | |
import os | |
import random | |
import numpy as np | |
import cv2 | |
from dataclasses import dataclass | |
from typing import Any, List, Dict, Optional, Union, Tuple | |
import torch | |
import google.generativeai as genai | |
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline | |
from diffusers import FluxTransformer2DModel, FluxInpaintPipeline | |
MARKDOWN = """ | |
# Prompt Canvas🎨 | |
Thanks to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for creating this amazing model, | |
and a big thanks to [Gothos](https://github.com/Gothos) for taking it to the next level by enabling inpainting with the FLUX. | |
""" | |
#Gemini Setup | |
genai.configure(api_key = os.environ['Gemini_API']) | |
gemini_flash = genai.GenerativeModel(model_name='gemini-1.5-flash-002') | |
def gemini_predict(prompt): | |
system_message = f"""You are the best text analyser. | |
You have to analyse a user query and identify what the user wants to change, from a given user query. | |
Examples: | |
Query: Change Lipstick colour to blue | |
Response: Lips | |
Query: Add a nose stud | |
Response: Nose | |
Query: Add a wallpaper to the right wall | |
Response: Right wall | |
Query: Change the Sofa's colour to Purple | |
Response: Sofa | |
Your response should be in 1 or 2-3 words | |
Query : {prompt} | |
""" | |
response = gemini_flash.generate_content(system_message) | |
return(str(response.text)[:-1]) | |
MAX_SEED = np.iinfo(np.int32).max | |
SAM_device = "cuda" # or "cpu" | |
DEVICE = "cuda" | |
###GroundingDINO & SAM Setup | |
#To store DINO results | |
class BoundingBox: | |
xmin: int | |
ymin: int | |
xmax: int | |
ymax: int | |
def xyxy(self) -> List[float]: | |
return [self.xmin, self.ymin, self.xmax, self.ymax] | |
class DetectionResult: | |
score: float | |
label: str | |
box: BoundingBox | |
mask: Optional[np.array] = None | |
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult': | |
return cls(score=detection_dict['score'], | |
label=detection_dict['label'], | |
box=BoundingBox(xmin=detection_dict['box']['xmin'], | |
ymin=detection_dict['box']['ymin'], | |
xmax=detection_dict['box']['xmax'], | |
ymax=detection_dict['box']['ymax'])) | |
#Utility Functions for Mask Generation | |
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]: | |
# Find contours in the binary mask | |
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
# Find the contour with the largest area | |
largest_contour = max(contours, key=cv2.contourArea) | |
# Extract the vertices of the contour | |
polygon = largest_contour.reshape(-1, 2).tolist() | |
return polygon | |
def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray: | |
""" | |
Convert a polygon to a segmentation mask. | |
Args: | |
- polygon (list): List of (x, y) coordinates representing the vertices of the polygon. | |
- image_shape (tuple): Shape of the image (height, width) for the mask. | |
Returns: | |
- np.ndarray: Segmentation mask with the polygon filled. | |
""" | |
# Create an empty mask | |
mask = np.zeros(image_shape, dtype=np.uint8) | |
# Convert polygon to an array of points | |
pts = np.array(polygon, dtype=np.int32) | |
# Fill the polygon with white color (255) | |
cv2.fillPoly(mask, [pts], color=(255,)) | |
return mask | |
def get_boxes(results: DetectionResult) -> List[List[List[float]]]: | |
boxes = [] | |
for result in results: | |
xyxy = result.box.xyxy | |
boxes.append(xyxy) | |
return [boxes] | |
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]: | |
masks = masks.cpu().float() | |
masks = masks.permute(0, 2, 3, 1) | |
masks = masks.mean(axis=-1) | |
masks = (masks > 0).int() | |
masks = masks.numpy().astype(np.uint8) | |
masks = list(masks) | |
#print(masks) | |
if polygon_refinement: | |
for idx, mask in enumerate(masks): | |
shape = mask.shape | |
polygon = mask_to_polygon(mask) | |
mask = polygon_to_mask(polygon, shape) | |
masks[idx] = mask | |
return masks | |
def get_alphacomp_mask(mask, image, random_color=True): | |
annotated_frame_pil = Image.fromarray(image).convert("RGBA") | |
mask_image_pil = Image.fromarray(mask).convert("RGBA") | |
return np.array(Image.alpha_composite(annotated_frame_pil, mask_image_pil)) | |
# Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion. | |
detector_id = "IDEA-Research/grounding-dino-tiny" | |
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=SAM_device) | |
#Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes. | |
segmenter_id = "facebook/sam-vit-base" | |
processor = AutoProcessor.from_pretrained(segmenter_id) | |
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(SAM_device) | |
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3) -> List[Dict[str, Any]]: | |
labels = [label if label.endswith(".") else label+"." for label in labels] | |
with torch.no_grad(): | |
results = object_detector(image, candidate_labels=labels, threshold=threshold) | |
torch.cuda.empty_cache() | |
results = [DetectionResult.from_dict(result) for result in results] | |
#print("DINO results:", results) | |
return results | |
def segment_SAM(image: Image.Image, detection_results: List[Dict[str, Any]], polygon_refinement: bool = False) -> List[DetectionResult]: | |
boxes = get_boxes(detection_results) | |
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(SAM_device) | |
with torch.no_grad(): | |
outputs = segmentator(**inputs) | |
torch.cuda.empty_cache() | |
masks = processor.post_process_masks(masks=outputs.pred_masks, original_sizes=inputs.original_sizes, | |
reshaped_input_sizes=inputs.reshaped_input_sizes)[0] | |
#print("Masks:", masks) | |
masks = refine_masks(masks, polygon_refinement) | |
for detection_result, mask in zip(detection_results, masks): | |
detection_result.mask = mask | |
return detection_results | |
def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], threshold: float = 0.3, | |
polygon_refinement: bool = False) -> Tuple[np.ndarray, List[DetectionResult]]: | |
if isinstance(image, str): | |
image = load_image(image) | |
detections = detect(image, labels, threshold) | |
segmented = segment_SAM(image, detections, polygon_refinement) | |
return np.array(image), segmented | |
def get_finalmask(image_array, detections): | |
for i,d in enumerate(detections): | |
mask_ = d.__getattribute__('mask') | |
if i==0: | |
image_with_mask = get_alphacomp_mask(mask_, image_array) | |
else: | |
image_with_mask += get_alphacomp_mask(mask_, image_array) | |
return image_with_mask | |
#Preprocessing Mask | |
kernel = np.ones((3, 3), np.uint8) # Taking a matrix of size 3 as the kernel | |
def preprocess_mask(pipe, inp_mask, expan_lvl, blur_lvl): | |
if expan_lvl>0: | |
inp_mask = Image.fromarray(cv2.dilate(np.array(inp_mask), kernel, iterations=expan_lvl)) | |
if blur_lvl>0: | |
inp_mask = pipe.mask_processor.blur(inp_mask, blur_factor=blur) | |
# inp_mask = Image.fromarray(np.array(inp_mask)) | |
return inp_mask | |
def generate_mask(inp_image, label, threshold): | |
image_array, segments = grounded_segmentation(image=inp_image, labels=label, threshold=threshold, polygon_refinement=True,) | |
inp_mask = get_finalmask(image_array, segments) | |
# print(type(inp_mask)) | |
return inp_mask | |
#Setting up Flux (Schnell) Inpainting | |
inpaint_pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE) | |
#Uncomment the following 4 lines, if you want LoRA Realism weights added to the pipeline | |
# inpaint_pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better") | |
# inpaint_pipe.set_adapters(["better"], adapter_weights=[2.6]) | |
# inpaint_pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) | |
# inpaint_pipe.unload_lora_weights() | |
#torch.cuda.empty_cache() | |
def process(input_image_editor, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale, threshold, expan_lvl, blur_lvl, progress=gr.Progress(track_tqdm=True)): | |
if not input_text: | |
raise gr.Error("Please enter a text prompt.") | |
#Object identification | |
item = gemini_predict(input_text) | |
#print(item) | |
image = input_image_editor['background'] | |
if not image: | |
raise gr.Error("Please upload an image.") | |
width, height = image.size | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
#Generating Mask | |
label = [item] | |
gen_mask = generate_mask(image, label, threshold) | |
#Pre-processing Mask, optional | |
if expan_lvl>0 or blur_lvl>0: | |
gen_mask = preprocess_mask(inpaint_pipe, gen_mask, expan_lvl, blur_lvl) | |
#Inpainting | |
generator = torch.Generator(device=DEVICE).manual_seed(seed) | |
result = inpaint_pipe(prompt=input_text, image=image, mask_image=gen_mask, width=width, height=height, | |
strength=strength, num_inference_steps=num_inference_steps, generator=generator, | |
guidance_scale=guidance_scale).images[0] | |
return result, gen_mask, seed, item | |
with gr.Blocks(theme=gr.themes.Ocean()) as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image_component = gr.ImageEditor( | |
label='Image', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")) | |
input_text_component = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
strength_slider = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.8, | |
step=0.01, | |
label="Strength" | |
) | |
num_inference_steps = gr.Slider( | |
minimum=1, | |
maximum=100, | |
value=32, | |
step=1, | |
label="Number of inference steps" | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=5, | |
) | |
seed_number = gr.Number( | |
label="Seed", | |
value=26, | |
precision=0 | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
with gr.Accordion("Mask Settings", open=False): | |
SAM_threshold = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.4, | |
step=0.01, | |
label="Threshold" | |
) | |
expansion_level = gr.Slider( | |
minimum=0, | |
maximum=5, | |
value=2, | |
step=1, | |
label="Mask Expansion level" | |
) | |
blur_level = gr.Slider( | |
minimum=0, | |
maximum=5, | |
step=1, | |
value=1, | |
label="Mask Blur level" | |
) | |
# with gr.Accordion("Upload a mask", open=False): | |
# uploaded_mask_component = gr.Image(label="Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources=["upload"], type="pil") | |
submit_button_component = gr.Button(value='Inpaint', variant='primary') | |
with gr.Column(scale=1): | |
output_image_component = gr.Image(type='pil', image_mode='RGB', label='Generated Image') | |
output_mask_component = gr.Image(type='pil', image_mode='RGB', label='Generated Mask') | |
with gr.Accordion("Debug Info", open=False): | |
output_seed = gr.Number(label="Used Seed") | |
identified_item = gr.Textbox(label="Gemini predicted item") | |
submit_button_component.click( | |
fn=process, | |
inputs=[input_image_component, input_text_component, strength_slider, seed_number, randomize_seed, num_inference_steps, guidance_scale, SAM_threshold, expansion_level, blur_level], | |
outputs=[output_image_component, output_mask_component, output_seed, identified_item] | |
) | |
demo.launch(debug=False, show_error=True) |