Spaces:
Running
on
Zero
Running
on
Zero
#Importing required libraries | |
import os | |
import random | |
import numpy as np | |
import torch | |
import spaces | |
import gradio as gr | |
from diffusers import FluxTransformer2DModel, FluxInpaintPipeline | |
import google.generativeai as genai | |
MARKDOWN = """ | |
# Prompt Canvas🎨 | |
Thanks to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for creating this amazing model, | |
and a big thanks to [Gothos](https://github.com/Gothos) for taking it to the next level by enabling inpainting with the FLUX. | |
""" | |
#Gemini Setup | |
genai.configure(api_key = os.environ['Gemini_API']) | |
gemini_flash = genai.GenerativeModel(model_name='gemini-1.5-flash-002') | |
def gemini_predict(prompt): | |
system_message = f"""You are the best text analyser. | |
You have to analyse a user query and identify what the user wants to change, from a given user query. | |
Examples: | |
Query: Change Lipstick colour to blue | |
Response: Lips | |
Query: Add a nose stud | |
Response: Nose | |
Query: Add a wallpaper to the right wall | |
Response: Right wall | |
Query: Change the Sofa's colour to Purple | |
Response: Sofa | |
Your response should be in 1 or 2-3 words | |
Query : {prompt} | |
""" | |
response = gemini_flash.generate_content(system_message) | |
return(str(response.text)[:-2]) | |
MAX_SEED = np.iinfo(np.int32).max | |
DEVICE = "cuda" #if torch.cuda.is_available() else "cpu" | |
#Setting up Flux (Schnell) Inpainting | |
#inpaint_pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE) | |
transformer_SchnellReal = FluxTransformer2DModel.from_single_file("https://huggingface.co/SG161222/RealFlux_1.0b_Schnell/blob/main/4%20-%20Schnell%20Transformer%20Version/RealFlux_1.0b_Schnell_Transformer.safetensors", torch_dtype=torch.bfloat16) | |
inpaint_pipe = FluxInpaintPipeline.from_pretrained(bfl_repo, transformer=transformer_SchnellReal, torch_dtype=dtype).to(DEVICE) | |
#Uncomment the following 4 lines, if you want LoRA Realism weights added to the pipeline | |
# inpaint_pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better") | |
# inpaint_pipe.set_adapters(["better"], adapter_weights=[2.6]) | |
# inpaint_pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) | |
# inpaint_pipe.unload_lora_weights() | |
#torch.cuda.empty_cache() | |
def process(input_image_editor, mask_image, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale=3.5, progress=gr.Progress(track_tqdm=True)): | |
if not input_text: | |
raise gr.Error("Please enter a text prompt.") | |
item = gemini_predict(input_text) | |
#print(item) | |
image = input_image_editor['background'] | |
if not image: | |
raise gr.Error("Please upload an image.") | |
width, height = image.size | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=DEVICE).manual_seed(seed) | |
result = inpaint_pipe(prompt=input_text, image=image, mask_image=mask_image, width=width, height=height, | |
strength=strength, num_inference_steps=num_inference_steps, generator=generator, | |
guidance_scale=guidance_scale).images[0] | |
return result, mask_image, seed, item | |
with gr.Blocks(theme=gr.themes.Ocean()) as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image_component = gr.ImageEditor( | |
label='Image', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")) | |
input_text_component = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
strength_slider = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.7, | |
step=0.01, | |
label="Strength" | |
) | |
num_inference_steps = gr.Slider( | |
minimum=1, | |
maximum=100, | |
value=30, | |
step=1, | |
label="Number of inference steps" | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
seed_number = gr.Number( | |
label="Seed", | |
value=42, | |
precision=0 | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Accordion("Upload a mask", open=False): | |
uploaded_mask_component = gr.Image(label="Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources=["upload"], type="pil") | |
submit_button_component = gr.Button(value='Inpaint', variant='primary') | |
with gr.Column(scale=1): | |
output_image_component = gr.Image(type='pil', image_mode='RGB', label='Generated Image') | |
output_mask_component = gr.Image(type='pil', image_mode='RGB', label='Generated Mask') | |
with gr.Accordion("Debug Info", open=False): | |
output_seed = gr.Number(label="Used Seed") | |
identified_item = gr.Textbox(label="Gemini predicted item") | |
submit_button_component.click( | |
fn=process, | |
inputs=[input_image_component, uploaded_mask_component, input_text_component, strength_slider, seed_number, randomize_seed, num_inference_steps, guidance_scale], | |
outputs=[output_image_component, output_mask_component, output_seed, identified_item] | |
) | |
demo.launch(debug=False, show_error=True) |