#Importing required libraries import os import random import numpy as np import torch import spaces import gradio as gr from diffusers import FluxInpaintPipeline import google.generativeai as genai MARKDOWN = """ # Prompt Canvas🎨 Thanks to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos) for taking it to the next level by enabling inpainting with the FLUX. """ #Gemini Setup genai.configure(api_key = os.environ['Gemini_API']) gemini_flash = genai.GenerativeModel(model_name='gemini-1.5-flash-002') def gemini_predict(prompt): system_message = f"""You are the best text analyser. You have to analyse a user query and identify what the user wants to change, from a given user query. Examples: Query: Change Lipstick colour to blue Response: Lips Query: Add a nose stud Response: Nose Query: Add a wallpaper to the right wall Response: Right wall Query: Change the Sofa's colour to Purple Response: Sofa Your response should be in 1 or 2-3 words Query : {prompt} """ response = gemini_flash.generate_content(system_message) return(str(response.text)[:-2]) MAX_SEED = np.iinfo(np.int32).max DEVICE = "cuda" #if torch.cuda.is_available() else "cpu" #Setting up Flux (Schnell) Inpainting, with Realism LoRA weights inpaint_pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE) inpaint_pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better") inpaint_pipe.set_adapters(["better"], adapter_weights=[2.6]) inpaint_pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) inpaint_pipe.unload_lora_weights() torch.cuda.empty_cache() @spaces.GPU() def process(input_image_editor, mask_image, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale=3.5, progress=gr.Progress(track_tqdm=True)): if not input_text: raise gr.Error("Please enter a text prompt.") item = gemini_predict(input_text) #print(item) image = input_image_editor['background'] if not image: raise gr.Error("Please upload an image.") width, height = image.size if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=DEVICE).manual_seed(seed) result = inpaint_pipe(prompt=input_text, image=image, mask_image=mask_image, width=width, height=height, strength=strength, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale).images[0] return result, mask_image, seed, item with gr.Blocks(theme=gr.themes.Ocean()) as demo: gr.Markdown(MARKDOWN) with gr.Row(): with gr.Column(scale=1): input_image_component = gr.ImageEditor( label='Image', type='pil', sources=["upload", "webcam"], image_mode='RGB', layers=False, brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")) input_text_component = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) with gr.Accordion("Advanced Settings", open=False): strength_slider = gr.Slider( minimum=0.0, maximum=1.0, value=0.7, step=0.01, label="Strength" ) num_inference_steps = gr.Slider( minimum=1, maximum=100, value=30, step=1, label="Number of inference steps" ) guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) seed_number = gr.Number( label="Seed", value=42, precision=0 ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Accordion("Upload a mask", open=False): uploaded_mask_component = gr.Image(label="Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources=["upload"], type="pil") submit_button_component = gr.Button(value='Inpaint', variant='primary') with gr.Column(scale=1): output_image_component = gr.Image(type='pil', image_mode='RGB', label='Generated Image') output_mask_component = gr.Image(type='pil', image_mode='RGB', label='Generated Mask') with gr.Accordion("Debug Info", open=False): output_seed = gr.Number(label="Used Seed") identified_item = gr.Textbox(label="Gemini predicted item") submit_button_component.click( fn=process, inputs=[input_image_component, uploaded_mask_component, input_text_component, strength_slider, seed_number, randomize_seed, num_inference_steps, guidance_scale], outputs=[output_image_component, output_mask_component, output_seed, identified_item] ) demo.launch(debug=False, show_error=True)