|
import streamlit as st |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
|
|
torch.random.manual_seed(0) |
|
model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-4k-instruct",trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct") |
|
|
|
text = st.text_area("Enter text....") |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful AI assistant."}, |
|
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}, |
|
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."}, |
|
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"}, |
|
] |
|
|
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
generation_args = { |
|
"max_new_tokens": 500, |
|
"return_full_text": False, |
|
"temperature": 0.0, |
|
"do_sample": False, |
|
} |
|
|
|
output = pipe(messages, **generation_args) |
|
|
|
if text: |
|
out = pipe(text) |
|
st.write(out) |