Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
-
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
|
5 |
st.write("runningg")
|
6 |
|
7 |
-
|
8 |
-
torch.random.manual_seed(0)
|
9 |
-
model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-4k-instruct",trust_remote_code=True)
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
11 |
-
|
12 |
text = st.text_area("Enter text....")
|
13 |
-
messages = [
|
14 |
-
{"role": "system", "content": "You are a helpful AI assistant."},
|
15 |
-
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
|
16 |
-
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
|
17 |
-
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
|
18 |
-
]
|
19 |
-
|
20 |
-
|
21 |
-
pipe = pipeline(
|
22 |
-
"text-generation",
|
23 |
-
model=model,
|
24 |
-
tokenizer=tokenizer,
|
25 |
-
)
|
26 |
-
|
27 |
-
generation_args = {
|
28 |
-
"max_new_tokens": 500,
|
29 |
-
"return_full_text": False,
|
30 |
-
"temperature": 0.0,
|
31 |
-
"do_sample": False,
|
32 |
-
}
|
33 |
-
|
34 |
-
|
35 |
|
36 |
|
37 |
-
if
|
38 |
-
|
39 |
-
out = pipe(messages, **generation_args)
|
40 |
-
st.write(out)
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
|
3 |
st.write("runningg")
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
text = st.text_area("Enter text....")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
+
if st.button("Analyse"):
|
9 |
+
print(text)
|
|
|
|