import streamlit as st import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline print("runningg") torch.random.manual_seed(0) model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-4k-instruct",trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct") text = st.text_area("Enter text....") messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}, {"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."}, {"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"}, ] pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, ) generation_args = { "max_new_tokens": 500, "return_full_text": False, "temperature": 0.0, "do_sample": False, } output = pipe(messages, **generation_args) if text: out = pipe(text) st.write(out)