import streamlit as st import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline print("runningg") #torch.random.manual_seed(0) #model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-4k-instruct",trust_remote_code=True) #tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct") #text = st.text_area("Enter text....") #messages = [ # {"role": "system", "content": "You are a helpful AI assistant."}, # {"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}, # {"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."}, # {"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"}, #] #pipe = pipeline( # "text-generation", # model=model, # tokenizer=tokenizer, #) #generation_args = { # "max_new_tokens": 500, # "return_full_text": False, # "temperature": 0.0, # "do_sample": False, #} #output = pipe(messages, **generation_args) #if text: # out = pipe(text) # st.write(out) st.write("aaa")