Spaces:
Runtime error
Runtime error
NilavoBoral
commited on
Commit
•
3ab3d0b
1
Parent(s):
ec0dd25
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
3 |
+
import os
|
4 |
+
import pinecone
|
5 |
+
import time
|
6 |
+
from datasets import load_dataset
|
7 |
+
from PyPDF2 import PdfReader
|
8 |
+
from langchain.text_splitter import CharacterTextSplitter
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from typing_extensions import Concatenate
|
11 |
+
from torch import cuda, bfloat16
|
12 |
+
import transformers
|
13 |
+
from langchain.llms import HuggingFacePipeline
|
14 |
+
from langchain.vectorstores import Pinecone
|
15 |
+
from langchain.chains import RetrievalQA
|
16 |
+
import gradio as gr
|
17 |
+
|
18 |
+
# Define the model from Hugging Face
|
19 |
+
model_id = 'meta-llama/Llama-2-13b-chat-hf'
|
20 |
+
|
21 |
+
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
22 |
+
|
23 |
+
# set quantization configuration to load large model with less GPU memory
|
24 |
+
# this requires the `bitsandbytes` library
|
25 |
+
bnb_config = transformers.BitsAndBytesConfig(
|
26 |
+
load_in_4bit=True,
|
27 |
+
bnb_4bit_quant_type='nf4',
|
28 |
+
bnb_4bit_use_double_quant=True,
|
29 |
+
bnb_4bit_compute_dtype=bfloat16
|
30 |
+
)
|
31 |
+
|
32 |
+
# begin initializing HF items, need auth token for these
|
33 |
+
hf_auth = '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'
|
34 |
+
model_config = transformers.AutoConfig.from_pretrained(
|
35 |
+
model_id,
|
36 |
+
use_auth_token=hf_auth
|
37 |
+
)
|
38 |
+
|
39 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
40 |
+
model_id,
|
41 |
+
trust_remote_code=True,
|
42 |
+
config=model_config,
|
43 |
+
quantization_config=bnb_config,
|
44 |
+
device_map='auto',
|
45 |
+
use_auth_token=hf_auth
|
46 |
+
)
|
47 |
+
model.eval()
|
48 |
+
|
49 |
+
|
50 |
+
# Define the tokenizer from Hugging Face
|
51 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
52 |
+
model_id,
|
53 |
+
use_auth_token=hf_auth
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
generate_text = transformers.pipeline(
|
58 |
+
model=model, tokenizer=tokenizer,
|
59 |
+
return_full_text=True, # langchain expects the full text
|
60 |
+
task='text-generation',
|
61 |
+
# we pass model parameters here too
|
62 |
+
temperature=0.0, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
|
63 |
+
max_new_tokens=512, # mex number of tokens to generate in the output
|
64 |
+
repetition_penalty=1.1 # without this output begins repeating
|
65 |
+
)
|
66 |
+
|
67 |
+
llm = HuggingFacePipeline(pipeline=generate_text)
|
68 |
+
|
69 |
+
|
70 |
+
# get API key from app.pinecone.io and environment from console
|
71 |
+
pinecone.init(
|
72 |
+
environment="gcp-starter",
|
73 |
+
api_key="a7dddfc1-8eb3-477e-bc69-0b52f0ee201a"
|
74 |
+
)
|
75 |
+
|
76 |
+
index_name = 'rag-llama-2-paper'
|
77 |
+
index = pinecone.Index(index_name)
|
78 |
+
|
79 |
+
embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2'
|
80 |
+
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
81 |
+
embed_model = HuggingFaceEmbeddings(
|
82 |
+
model_name=embed_model_id,
|
83 |
+
model_kwargs={'device': device},
|
84 |
+
encode_kwargs={'device': device, 'batch_size': 32}
|
85 |
+
)
|
86 |
+
|
87 |
+
text_field = 'text' # field in metadata that contains text content
|
88 |
+
vectorstore = Pinecone(
|
89 |
+
index, embed_model.embed_query, text_field
|
90 |
+
)
|
91 |
+
|
92 |
+
rag_pipeline = RetrievalQA.from_chain_type(
|
93 |
+
llm=llm, chain_type='stuff',
|
94 |
+
retriever=vectorstore.as_retriever()
|
95 |
+
)
|
96 |
+
|
97 |
+
# Function to generate text using the model
|
98 |
+
def answer(Question):
|
99 |
+
return rag_pipeline(Question)['result']
|
100 |
+
|
101 |
+
|
102 |
+
# Create a Gradio interface
|
103 |
+
iface = gr.Interface(
|
104 |
+
fn=answer,
|
105 |
+
inputs=gr.Textbox(Question="Ask your query"),
|
106 |
+
outputs=gr.Textbox(),
|
107 |
+
title="Know Llama-2",
|
108 |
+
description="Ask the Llama-2-13b model anything about itself.",
|
109 |
+
)
|
110 |
+
|
111 |
+
# Launch the Gradio app
|
112 |
+
iface.launch()
|