File size: 4,215 Bytes
78c921d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.
const f64 = new Float64Array(1);
const u32 = new Uint32Array(f64.buffer);
/**
 * Convert uint16 (logically a float16) to a JS float64. Inspired by numpy's `npy_half_to_double`:
 * https://github.com/numpy/numpy/blob/5a5987291dc95376bb098be8d8e5391e89e77a2c/numpy/core/src/npymath/halffloat.c#L29
 * @param h {number} the uint16 to convert
 * @private
 * @ignore
 */
export function uint16ToFloat64(h) {
    const expo = (h & 0x7C00) >> 10;
    const sigf = (h & 0x03FF) / 1024;
    const sign = Math.pow((-1), ((h & 0x8000) >> 15));
    switch (expo) {
        case 0x1F: return sign * (sigf ? Number.NaN : 1 / 0);
        case 0x00: return sign * (sigf ? 6.103515625e-5 * sigf : 0);
    }
    return sign * (Math.pow(2, (expo - 15))) * (1 + sigf);
}
/**
 * Convert a float64 to uint16 (assuming the float64 is logically a float16). Inspired by numpy's `npy_double_to_half`:
 * https://github.com/numpy/numpy/blob/5a5987291dc95376bb098be8d8e5391e89e77a2c/numpy/core/src/npymath/halffloat.c#L43
 * @param d {number} The float64 to convert
 * @private
 * @ignore
 */
export function float64ToUint16(d) {
    if (d !== d) {
        return 0x7E00;
    } // NaN
    f64[0] = d;
    // Magic numbers:
    // 0x80000000 = 10000000 00000000 00000000 00000000 -- masks the 32nd bit
    // 0x7ff00000 = 01111111 11110000 00000000 00000000 -- masks the 21st-31st bits
    // 0x000fffff = 00000000 00001111 11111111 11111111 -- masks the 1st-20th bit
    const sign = (u32[1] & 0x80000000) >> 16 & 0xFFFF;
    let expo = (u32[1] & 0x7FF00000), sigf = 0x0000;
    if (expo >= 0x40F00000) {
        //
        // If exponent overflowed, the float16 is either NaN or Infinity.
        // Rules to propagate the sign bit: mantissa > 0 ? NaN : +/-Infinity
        //
        // Magic numbers:
        // 0x40F00000 = 01000000 11110000 00000000 00000000 -- 6-bit exponent overflow
        // 0x7C000000 = 01111100 00000000 00000000 00000000 -- masks the 27th-31st bits
        //
        // returns:
        // qNaN, aka 32256 decimal, 0x7E00 hex, or 01111110 00000000 binary
        // sNaN, aka 32000 decimal, 0x7D00 hex, or 01111101 00000000 binary
        // +inf, aka 31744 decimal, 0x7C00 hex, or 01111100 00000000 binary
        // -inf, aka 64512 decimal, 0xFC00 hex, or 11111100 00000000 binary
        //
        // If mantissa is greater than 23 bits, set to +Infinity like numpy
        if (u32[0] > 0) {
            expo = 0x7C00;
        }
        else {
            expo = (expo & 0x7C000000) >> 16;
            sigf = (u32[1] & 0x000FFFFF) >> 10;
        }
    }
    else if (expo <= 0x3F000000) {
        //
        // If exponent underflowed, the float is either signed zero or subnormal.
        //
        // Magic numbers:
        // 0x3F000000 = 00111111 00000000 00000000 00000000 -- 6-bit exponent underflow
        //
        sigf = 0x100000 + (u32[1] & 0x000FFFFF);
        sigf = 0x100000 + (sigf << ((expo >> 20) - 998)) >> 21;
        expo = 0;
    }
    else {
        //
        // No overflow or underflow, rebase the exponent and round the mantissa
        // Magic numbers:
        // 0x200 = 00000010 00000000 -- masks off the 10th bit
        //
        // Ensure the first mantissa bit (the 10th one) is 1 and round
        expo = (expo - 0x3F000000) >> 10;
        sigf = ((u32[1] & 0x000FFFFF) + 0x200) >> 10;
    }
    return sign | expo | sigf & 0xFFFF;
}

//# sourceMappingURL=math.mjs.map