Spaces:
Running
Running
File size: 8,082 Bytes
ce4236e 0d0c645 99d52d8 ce4236e 0d0c645 ce4236e 0d0c645 5272e74 ce4236e 5272e74 ce4236e 7ef3dbe 5272e74 ce4236e 242350b ce4236e 5272e74 ce4236e 5272e74 dcc8d7f 5272e74 242350b 5272e74 242350b 5272e74 99d52d8 ba43ebe 99d52d8 ba43ebe 648e88d ba43ebe 99d52d8 dd4858e 99d52d8 8a56ec1 ba43ebe 8a56ec1 ba43ebe 7274bd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import requests
import tensorflow as tf
import pandas as pd
import numpy as np
from operator import add
from functools import reduce
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Seq import Seq
from keras.models import load_model
import random
# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')
ntmap = {'A': (1, 0, 0, 0),
'C': (0, 1, 0, 0),
'G': (0, 0, 1, 0),
'T': (0, 0, 0, 1)
}
def get_seqcode(seq):
return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape(
(1, len(seq), -1))
from keras.models import load_model
class DCModelOntar:
def __init__(self, ontar_model_dir, is_reg=False):
self.model = load_model(ontar_model_dir)
def ontar_predict(self, x, channel_first=True):
if channel_first:
x = x.transpose([0, 2, 3, 1])
yp = self.model.predict(x)
return yp.ravel()
# Function to predict on-target efficiency and format output
def format_prediction_output(targets, model_path):
dcModel = DCModelOntar(model_path)
formatted_data = []
for target in targets:
# Encode the gRNA sequence
encoded_seq = get_seqcode(target[0]).reshape(-1,4,1,23)
# Predict on-target efficiency using the model
prediction = dcModel.ontar_predict(encoded_seq)
# Format output
gRNA = target[1]
chr = target[2]
start = target[3]
end = target[4]
strand = target[5]
formatted_data.append([chr, start, end, strand, target[0], gRNA, prediction[0]])
return formatted_data
def fetch_ensembl_transcripts(gene_symbol):
url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
gene_data = response.json()
if 'Transcript' in gene_data:
return gene_data['Transcript']
else:
print("No transcripts found for gene:", gene_symbol)
return None
else:
print(f"Error fetching gene data from Ensembl: {response.text}")
return None
def fetch_ensembl_sequence(transcript_id):
url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
sequence_data = response.json()
if 'seq' in sequence_data:
return sequence_data['seq']
else:
print("No sequence found for transcript:", transcript_id)
return None
else:
print(f"Error fetching sequence data from Ensembl: {response.text}")
return None
def find_crispr_targets(sequence, chr, start, strand, pam="NGG", target_length=20):
targets = []
len_sequence = len(sequence)
for i in range(len_sequence - len(pam) + 1):
if sequence[i + 1:i + 3] == pam[1:]:
if i >= target_length:
target_seq = sequence[i - target_length:i + 3]
tar_start = start + i - target_length
tar_end = start + i + 3
gRNA = sequence[i - target_length:i]
targets.append([target_seq, gRNA, chr, str(tar_start), str(tar_end), str(strand)])
return targets
def process_gene(gene_symbol, model_path):
transcripts = fetch_ensembl_transcripts(gene_symbol)
all_data = []
gene_sequence = '' # Initialize an empty string for the gene sequence
if transcripts:
for transcript in transcripts:
transcript_id = transcript['id']
chr = transcript.get('seq_region_name', 'unknown')
start = transcript.get('start', 0)
strand = transcript.get('strand', 'unknown')
# Fetch the sequence here and concatenate if multiple transcripts
gene_sequence += fetch_ensembl_sequence(transcript_id) or ''
# Fetch exon and CDS information
exons = fetch_ensembl_exons(transcript_id)
cds_list = fetch_ensembl_cds(transcript_id)
# You might want to do something specific with exons and CDS information here
# For example, store them, print them, or include them in your analysis
if gene_sequence:
gRNA_sites = find_crispr_targets(gene_sequence, chr, start, strand)
if gRNA_sites:
formatted_data = format_prediction_output(gRNA_sites, model_path)
all_data.extend(formatted_data)
# Return the data, fetched sequence, and possibly exon/CDS data
return all_data, gene_sequence, exons, cds_list
def fetch_ensembl_exons(transcript_id):
"""Fetch exon information for a given transcript from Ensembl."""
url = f"https://rest.ensembl.org/overlap/id/{transcript_id}?feature=exon;content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
return response.json() # Returns a list of exons for the transcript
else:
print(f"Error fetching exon data from Ensembl for transcript {transcript_id}: {response.text}")
return None
def fetch_ensembl_cds(transcript_id):
"""Fetch coding sequence (CDS) information for a given transcript from Ensembl."""
url = f"https://rest.ensembl.org/overlap/id/{transcript_id}?feature=cds;content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
return response.json() # Returns a list of CDS regions for the transcript
else:
print(f"Error fetching CDS data from Ensembl for transcript {transcript_id}: {response.text}")
return None
def create_genbank_features(formatted_data):
features = []
for data in formatted_data:
# Strand conversion to Biopython's convention
strand = 1 if data[3] == '+' else -1
location = FeatureLocation(start=int(data[1]), end=int(data[2]), strand=strand)
feature = SeqFeature(location=location, type="misc_feature", qualifiers={
'label': data[5], # Use gRNA as the label
'target': data[4], # Include the target sequence
'note': f"Prediction: {data[6]}" # Include the prediction score
})
features.append(feature)
return features
def generate_genbank_file_from_df(df, gene_sequence, gene_symbol, output_path):
features = []
for index, row in df.iterrows():
location = FeatureLocation(start=int(row["Start Pos"]),
end=int(row["End Pos"]),
strand=int(row["Strand"]))
feature = SeqFeature(location=location, type="gene", qualifiers={
'locus_tag': row["Gene ID"], # Assuming Gene ID is equivalent to Chromosome here
'note': f"gRNA: {row['gRNA']}, Prediction: {row['Prediction']}"
})
features.append(feature)
record = SeqRecord(Seq(gene_sequence), id=gene_symbol, name=gene_symbol,
description='CRISPR Cas9 predicted targets', features=features)
# Add the missing molecule_type annotation
record.annotations["molecule_type"] = "DNA"
SeqIO.write(record, output_path, "genbank")
def create_bed_file_from_df(df, output_path):
with open(output_path, 'w') as bed_file:
for index, row in df.iterrows():
chrom = row["Gene ID"]
start = int(row["Start Pos"])
end = int(row["End Pos"])
strand = '+' if row["Strand"] == '+' else '-'
gRNA = row["gRNA"]
score = str(row["Prediction"]) # Ensure score is converted to string if not already
bed_file.write(f"{chrom}\t{start}\t{end}\t{gRNA}\t{score}\t{strand}\n")
def create_csv_from_df(df, output_path):
df.to_csv(output_path, index=False) |