Spaces:
Running
Running
File size: 7,721 Bytes
ce4236e 0d0c645 99d52d8 ce4236e 0d0c645 ce4236e 0d0c645 ce4236e dcc8d7f 78b5697 ce4236e 78b5697 ce4236e 78b5697 ce4236e 7ef3dbe 78b5697 ce4236e 78b5697 242350b ce4236e 78b5697 ce4236e 78b5697 dcc8d7f 78b5697 242350b 78b5697 242350b 78b5697 dcc8d7f 99d52d8 ba43ebe 99d52d8 ba43ebe 648e88d ba43ebe 99d52d8 dd4858e 99d52d8 8a56ec1 ba43ebe 8a56ec1 ba43ebe 7274bd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import requests
import tensorflow as tf
import pandas as pd
import numpy as np
from operator import add
from functools import reduce
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Seq import Seq
from keras.models import load_model
import random
# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')
ntmap = {'A': (1, 0, 0, 0),
'C': (0, 1, 0, 0),
'G': (0, 0, 1, 0),
'T': (0, 0, 0, 1)
}
def get_seqcode(seq):
return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape(
(1, len(seq), -1))
from keras.models import load_model
class DCModelOntar:
def __init__(self, ontar_model_dir, is_reg=False):
self.model = load_model(ontar_model_dir)
def ontar_predict(self, x, channel_first=True):
if channel_first:
x = x.transpose([0, 2, 3, 1])
yp = self.model.predict(x)
return yp.ravel()
def fetch_ensembl_transcripts(gene_symbol):
url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
gene_data = response.json()
if 'Transcript' in gene_data:
return gene_data['Transcript']
else:
print("No transcripts found for gene:", gene_symbol)
return None
else:
print(f"Error fetching gene data from Ensembl: {response.text}")
return None
def fetch_ensembl_sequence(transcript_id):
url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
sequence_data = response.json()
if 'seq' in sequence_data:
return sequence_data['seq']
else:
print("No sequence found for transcript:", transcript_id)
return None
else:
print(f"Error fetching sequence data from Ensembl: {response.text}")
return None
def fetch_ensembl_cds(transcript_id):
url = f"https://rest.ensembl.org/overlap/id/{transcript_id}?feature=cds;content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
cds_data = response.json()
return cds_data
else:
print(f"Error fetching CDS data from Ensembl: {response.text}")
return []
def find_crispr_targets(sequence, chr, start, strand, transcript_id, pam="NGG", target_length=20):
targets = []
len_sequence = len(sequence)
complement = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'}
if strand == -1:
sequence = ''.join([complement[base] for base in reversed(sequence)])
for i in range(len_sequence - len(pam) + 1):
if sequence[i + 1:i + 3] == pam[1:]:
if i >= target_length:
target_seq = sequence[i - target_length:i + 3]
tar_start = start + i - target_length
tar_end = start + i + 3
sgRNA = sequence[i - target_length:i]
targets.append([target_seq, sgRNA, chr, str(tar_start), str(tar_end), str(strand), transcript_id])
return targets
# Function to predict on-target efficiency and format output
def format_prediction_output(targets, model_path):
dcModel = DCModelOntar(model_path)
formatted_data = []
for target in targets:
# Encode the gRNA sequence
encoded_seq = get_seqcode(target[0]).reshape(-1,4,1,23)
# Predict on-target efficiency using the model
prediction = dcModel.ontar_predict(encoded_seq)
# Format output
sgRNA = target[1]
chr = target[2]
start = target[3]
end = target[4]
strand = target[5]
transcript_id = target[6]
formatted_data.append([chr, start, end, strand, transcript_id, target[0], sgRNA, prediction[0]])
return formatted_data
def process_gene(gene_symbol, model_path):
transcripts = fetch_ensembl_transcripts(gene_symbol)
results = []
if transcripts:
for i in range(len(transcripts)):
Exons = transcripts[i]['Exon']
cds_list = fetch_ensembl_cds(transcript_id)
transcript_id = transcripts[i]['display_name']
for j in range(len(Exons)):
exon_id = Exons[j]['id']
gene_sequence = fetch_ensembl_sequence(exon_id)
if gene_sequence:
start = Exons[j]['start']
strand = Exons[j]['strand']
chr = Exons[j]['seq_region_name']
targets = find_crispr_targets(gene_sequence, chr, start, strand, transcript_id)
if not targets:
print("No gRNA sites found in the gene sequence.")
else:
# Predict on-target efficiency for each gRNA site
formatted_data = format_prediction_output(targets,model_path)
results.append(formatted_data)
else:
print("Failed to retrieve gene sequence.")
else:
print("Failed to retrieve transcripts.")
# Note: Returning last exon's sequence, might need adjustment based on use-case
return results, gene_sequence, Exons, cds_list
def create_genbank_features(formatted_data):
features = []
for data in formatted_data:
# Strand conversion to Biopython's convention
strand = 1 if data[3] == '+' else -1
location = FeatureLocation(start=int(data[1]), end=int(data[2]), strand=strand)
feature = SeqFeature(location=location, type="misc_feature", qualifiers={
'label': data[5], # Use gRNA as the label
'target': data[4], # Include the target sequence
'note': f"Prediction: {data[6]}" # Include the prediction score
})
features.append(feature)
return features
def generate_genbank_file_from_df(df, gene_sequence, gene_symbol, output_path):
features = []
for index, row in df.iterrows():
location = FeatureLocation(start=int(row["Start Pos"]),
end=int(row["End Pos"]),
strand=int(row["Strand"]))
feature = SeqFeature(location=location, type="gene", qualifiers={
'locus_tag': row["Gene ID"], # Assuming Gene ID is equivalent to Chromosome here
'note': f"gRNA: {row['gRNA']}, Prediction: {row['Prediction']}"
})
features.append(feature)
record = SeqRecord(Seq(gene_sequence), id=gene_symbol, name=gene_symbol,
description='CRISPR Cas9 predicted targets', features=features)
# Add the missing molecule_type annotation
record.annotations["molecule_type"] = "DNA"
SeqIO.write(record, output_path, "genbank")
def create_bed_file_from_df(df, output_path):
with open(output_path, 'w') as bed_file:
for index, row in df.iterrows():
chrom = row["Gene ID"]
start = int(row["Start Pos"])
end = int(row["End Pos"])
strand = '+' if row["Strand"] == '+' else '-'
gRNA = row["gRNA"]
score = str(row["Prediction"]) # Ensure score is converted to string if not already
bed_file.write(f"{chrom}\t{start}\t{end}\t{gRNA}\t{score}\t{strand}\n")
def create_csv_from_df(df, output_path):
df.to_csv(output_path, index=False) |