Spaces:
Running
Running
File size: 8,195 Bytes
ce4236e 0d0c645 99d52d8 ce4236e 0d0c645 ce4236e 0d0c645 5272e74 ce4236e 4fa4501 ce4236e 4fa4501 ce4236e 4fa4501 ce4236e 4fa4501 ce4236e 4fa4501 ce4236e 4fa4501 ce4236e 3023ae4 4fa4501 ce4236e 3023ae4 4fa4501 ce4236e 7ef3dbe 4fa4501 ce4236e 4fa4501 242350b ce4236e 4fa4501 ad9ec7b ce4236e ad9ec7b 4fa4501 ad9ec7b 4fa4501 ad9ec7b 4fa4501 ad9ec7b 4fa4501 ad9ec7b 4fa4501 ad9ec7b 4fa4501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import requests
import tensorflow as tf
import pandas as pd
import numpy as np
from operator import add
from functools import reduce
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Seq import Seq
from keras.models import load_model
import random
# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')
ntmap = {'A': (1, 0, 0, 0),
'C': (0, 1, 0, 0),
'G': (0, 0, 1, 0),
'T': (0, 0, 0, 1)
}
def get_seqcode(seq):
return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape(
(1, len(seq), -1))
from keras.models import load_model
class DCModelOntar:
def __init__(self, ontar_model_dir, is_reg=False):
self.model = load_model(ontar_model_dir)
def ontar_predict(self, x, channel_first=True):
if channel_first:
x = x.transpose([0, 2, 3, 1])
yp = self.model.predict(x)
return yp.ravel()
def fetch_ensembl_transcripts(gene_symbol):
url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
gene_data = response.json()
if 'Transcript' in gene_data:
return gene_data['Transcript']
else:
print("No transcripts found for gene:", gene_symbol)
return None
else:
print(f"Error fetching gene data from Ensembl: {response.text}")
return None
def fetch_ensembl_sequence(transcript_id):
url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
sequence_data = response.json()
if 'seq' in sequence_data:
return sequence_data['seq']
else:
print("No sequence found for transcript:", transcript_id)
return None
else:
print(f"Error fetching sequence data from Ensembl: {response.text}")
return None
def find_crispr_targets(sequence, chr, start, strand, transcript_id, exon_id, pam="NGG", target_length=20):
targets = []
len_sequence = len(sequence)
complement = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'}
dnatorna = {'A': 'A', 'T': 'U', 'C': 'C', 'G': 'G'}
if strand == -1:
sequence = ''.join([complement[base] for base in sequence])
for i in range(len_sequence - len(pam) + 1):
if sequence[i + 1:i + 3] == pam[1:]:
if i >= target_length:
target_seq = sequence[i - target_length:i + 3]
tar_start = start + i - target_length
tar_end = start + i + 3
gRNA = ''.join([dnatorna[base] for base in sequence[i - target_length:i]])
targets.append([target_seq, gRNA, chr, str(tar_start), str(tar_end), str(strand), transcript_id, exon_id])
return targets
# Function to predict on-target efficiency and format output
def format_prediction_output(targets, model_path):
dcModel = DCModelOntar(model_path)
formatted_data = []
for target in targets:
# Encode the gRNA sequence
encoded_seq = get_seqcode(target[0]).reshape(-1,4,1,23)
# Predict on-target efficiency using the model
prediction = dcModel.ontar_predict(encoded_seq)
# Format output
gRNA = target[1]
chr = target[2]
start = target[3]
end = target[4]
strand = target[5]
transcript_id = target[6]
exon_id = target[7]
formatted_data.append([chr, start, end, strand, transcript_id, exon_id, target[0], gRNA, prediction[0]])
return formatted_data
def process_gene(gene_symbol, model_path):
transcripts = fetch_ensembl_transcripts(gene_symbol)
results = []
all_exons = [] # To accumulate all exons
all_gene_sequences = [] # To accumulate all gene sequences
if transcripts:
for transcript in transcripts:
Exons = transcript['Exon']
all_exons.extend(Exons) # Add all exons from this transcript to the list
transcript_id = transcript['id']
for exon in Exons:
exon_id = exon['id']
gene_sequence = fetch_ensembl_sequence(exon_id)
if gene_sequence:
all_gene_sequences.append(gene_sequence) # Add this gene sequence to the list
start = exon['start']
strand = exon['strand']
chr = exon['seq_region_name']
targets = find_crispr_targets(gene_sequence, chr, start, strand, transcript_id, exon_id)
if targets:
# Predict on-target efficiency for each gRNA site
formatted_data = format_prediction_output(targets, model_path)
results.extend(formatted_data)
else:
print(f"Failed to retrieve gene sequence for exon {exon_id}.")
else:
print("Failed to retrieve transcripts.")
# Return the sorted output, combined gene sequences, and all exons
return results, all_gene_sequences, all_exons
# def create_genbank_features(formatted_data):
# features = []
# for data in formatted_data:
# # Strand conversion to Biopython's convention
# strand = 1 if data[3] == '+' else -1
# location = FeatureLocation(start=int(data[1]), end=int(data[2]), strand=strand)
# feature = SeqFeature(location=location, type="misc_feature", qualifiers={
# 'label': data[5], # Use gRNA as the label
# 'target': data[4], # Include the target sequence
# 'note': f"Prediction: {data[6]}" # Include the prediction score
# })
# features.append(feature)
# return features
#
# def generate_genbank_file_from_df(df, gene_sequence, gene_symbol, output_path):
# features = []
# for index, row in df.iterrows():
# # Use 'Transcript ID' if it exists, otherwise use a default value like 'Unknown'
# transcript_id = row.get("Transcript ID", "Unknown")
#
# # Make sure to use the correct column names for Start Pos, End Pos, and Strand
# location = FeatureLocation(start=int(row["Start Pos"]),
# end=int(row["End Pos"]),
# strand=1 if row["Strand"] == '+' else -1)
# feature = SeqFeature(location=location, type="gene", qualifiers={
# 'locus_tag': transcript_id, # Now using the variable that holds the safe value
# 'note': f"gRNA: {row['gRNA']}, Prediction: {row['Prediction']}"
# })
# features.append(feature)
#
# # The rest of the function remains unchanged
# record = SeqRecord(Seq(gene_sequence), id=gene_symbol, name=gene_symbol,
# description=f'CRISPR Cas9 predicted targets for {gene_symbol}', features=features)
# record.annotations["molecule_type"] = "DNA"
# SeqIO.write(record, output_path, "genbank")
#
#
# def create_bed_file_from_df(df, output_path):
# with open(output_path, 'w') as bed_file:
# for index, row in df.iterrows():
# # Adjust field names based on your actual formatted data
# chrom = row["Chr"]
# start = int(row["Start Pos"])
# end = int(row["End Pos"])
# strand = '+' if row["Strand"] == '+' else '-' # Ensure strand is correctly interpreted
# gRNA = row["gRNA"]
# score = str(row["Prediction"]) # Ensure score is converted to string if not already
# transcript_id = row["Transcript"] # Extract transcript ID
# bed_file.write(f"{chrom}\t{start}\t{end}\t{gRNA}\t{score}\t{strand}\t{transcript_id}\n") # Include transcript ID in BED output
#
#
# def create_csv_from_df(df, output_path):
# df.to_csv(output_path, index=False) |