Spaces:
Running
Running
File size: 9,596 Bytes
4a303ce bc641c8 4a303ce 77b771b 4a303ce bc641c8 4a303ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import tensorflow as tf
from keras import regularizers
from keras.layers import Input, Dense, Dropout, Activation, Conv1D
from keras.layers import GlobalAveragePooling1D, AveragePooling1D
from keras.layers import Bidirectional, LSTM
from keras import Model
from keras.metrics import MeanSquaredError
import pandas as pd
import numpy as np
import requests
from functools import reduce
from operator import add
import tabulate
from difflib import SequenceMatcher
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Seq import Seq
import cyvcf2
import parasail
import re
ntmap = {'A': (1, 0, 0, 0),
'C': (0, 1, 0, 0),
'G': (0, 0, 1, 0),
'T': (0, 0, 0, 1)
}
def get_seqcode(seq):
return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape((1, len(seq), -1))
def BiLSTM_model(input_shape):
input = Input(shape=input_shape)
conv1 = Conv1D(128, 5, activation="relu")(input)
pool1 = AveragePooling1D(2)(conv1)
drop1 = Dropout(0.1)(pool1)
conv2 = Conv1D(128, 5, activation="relu")(drop1)
pool2 = AveragePooling1D(2)(conv2)
drop2 = Dropout(0.1)(pool2)
lstm1 = Bidirectional(LSTM(128,
dropout=0.1,
activation='tanh',
return_sequences=True,
kernel_regularizer=regularizers.l2(1e-4)))(drop2)
avgpool = GlobalAveragePooling1D()(lstm1)
dense1 = Dense(128,
kernel_regularizer=regularizers.l2(1e-4),
bias_regularizer=regularizers.l2(1e-4),
activation="relu")(avgpool)
drop3 = Dropout(0.1)(dense1)
dense2 = Dense(32,
kernel_regularizer=regularizers.l2(1e-4),
bias_regularizer=regularizers.l2(1e-4),
activation="relu")(drop3)
drop4 = Dropout(0.1)(dense2)
dense3 = Dense(32,
kernel_regularizer=regularizers.l2(1e-4),
bias_regularizer=regularizers.l2(1e-4),
activation="relu")(drop4)
drop5 = Dropout(0.1)(dense3)
output = Dense(1, activation="linear")(drop5)
model = Model(inputs=[input], outputs=[output])
return model
def fetch_ensembl_transcripts(gene_symbol):
url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
gene_data = response.json()
if 'Transcript' in gene_data:
return gene_data['Transcript']
else:
print("No transcripts found for gene:", gene_symbol)
return None
else:
print(f"Error fetching gene data from Ensembl: {response.text}")
return None
def fetch_ensembl_sequence(transcript_id):
url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
sequence_data = response.json()
if 'seq' in sequence_data:
return sequence_data['seq']
else:
print("No sequence found for transcript:", transcript_id)
return None
else:
print(f"Error fetching sequence data from Ensembl: {response.text}")
return None
def find_crispr_targets(sequence, chr, start, end, strand, transcript_id, exon_id, pam="TTTN", target_length=34):
targets = []
len_sequence = len(sequence)
#complement = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'}
dnatorna = {'A': 'A', 'T': 'U', 'C': 'C', 'G': 'G'}
for i in range(len_sequence - target_length + 1):
target_seq = sequence[i:i + target_length]
if target_seq[4:7] == 'TTT':
if strand == -1:
tar_start = end - i - target_length + 1
tar_end = end -i
#seq_in_ref = ''.join([complement[base] for base in target_seq])[::-1]
else:
tar_start = start + i
tar_end = start + i + target_length - 1
#seq_in_ref = target_seq
gRNA = ''.join([dnatorna[base] for base in target_seq[8:28]])
targets.append([target_seq, gRNA, chr, str(tar_start), str(tar_end), str(strand), transcript_id, exon_id])
#targets.append([target_seq, gRNA, chr, str(tar_start), str(tar_end), str(strand), transcript_id, exon_id, seq_in_ref])
return targets
def format_prediction_output(targets, model_path):
# Loading weights for the model
Crispr_BiLSTM = BiLSTM_model(input_shape=(34, 4))
Crispr_BiLSTM.load_weights(model_path)
formatted_data = []
for target in targets:
# Predict
encoded_seq = get_seqcode(target[0])
prediction = float(list(Crispr_BiLSTM.predict(encoded_seq, verbose=0)[0])[0])
if prediction > 100:
prediction = 100
# Format output
gRNA = target[1]
chr = target[2]
start = target[3]
end = target[4]
strand = target[5]
transcript_id = target[6]
exon_id = target[7]
#seq_in_ref = target[8]
#formatted_data.append([chr, start, end, strand, transcript_id, exon_id, target[0], gRNA, seq_in_ref, prediction])
formatted_data.append([chr, start, end, strand, transcript_id, exon_id, target[0], gRNA, prediction])
return formatted_data
def process_gene(gene_symbol, model_path):
transcripts = fetch_ensembl_transcripts(gene_symbol)
results = []
all_exons = [] # To accumulate all exons
all_gene_sequences = [] # To accumulate all gene sequences
if transcripts:
for transcript in transcripts:
Exons = transcript['Exon']
all_exons.extend(Exons) # Add all exons from this transcript to the list
transcript_id = transcript['id']
for Exon in Exons:
exon_id = Exon['id']
gene_sequence = fetch_ensembl_sequence(exon_id)
if gene_sequence:
all_gene_sequences.append(gene_sequence) # Add this gene sequence to the list
chr = Exon['seq_region_name']
start = Exon['start']
end = Exon['end']
strand = Exon['strand']
targets = find_crispr_targets(gene_sequence, chr, start, end, strand, transcript_id, exon_id)
if targets:
# Predict on-target efficiency for each gRNA site
formatted_data = format_prediction_output(targets, model_path)
results.extend(formatted_data) # Flatten the results
else:
print(f"Failed to retrieve gene sequence for exon {exon_id}.")
else:
print("Failed to retrieve transcripts.")
output = []
for result in results:
for item in result:
output.append(item)
# Return the sorted output, combined gene sequences, and all exons
return results, all_gene_sequences, all_exons
def create_genbank_features(data):
features = []
# If the input data is a DataFrame, convert it to a list of lists
if isinstance(data, pd.DataFrame):
formatted_data = data.values.tolist()
elif isinstance(data, list):
formatted_data = data
else:
raise TypeError("Data should be either a list or a pandas DataFrame.")
for row in formatted_data:
try:
start = int(row[1])
end = int(row[2])
except ValueError as e:
print(f"Error converting start/end to int: {row[1]}, {row[2]} - {e}")
continue
strand = 1 if row[3] == '+' else -1
location = FeatureLocation(start=start, end=end, strand=strand)
feature = SeqFeature(location=location, type="misc_feature", qualifiers={
'label': row[7], # Use gRNA as the label
'note': f"Prediction: {row[8]}" # Include the prediction score
})
features.append(feature)
return features
def generate_genbank_file_from_df(df, gene_sequence, gene_symbol, output_path):
# Ensure gene_sequence is a string before creating Seq object
if not isinstance(gene_sequence, str):
gene_sequence = str(gene_sequence)
features = create_genbank_features(df)
# Now gene_sequence is guaranteed to be a string, suitable for Seq
seq_obj = Seq(gene_sequence)
record = SeqRecord(seq_obj, id=gene_symbol, name=gene_symbol,
description=f'CRISPR Cas12 predicted targets for {gene_symbol}', features=features)
record.annotations["molecule_type"] = "DNA"
SeqIO.write(record, output_path, "genbank")
def create_bed_file_from_df(df, output_path):
with open(output_path, 'w') as bed_file:
for index, row in df.iterrows():
chrom = row["Chr"]
start = int(row["Start Pos"])
end = int(row["End Pos"])
strand = '+' if row["Strand"] == '1' else '-'
gRNA = row["gRNA"]
score = str(row["Prediction"])
# transcript_id is not typically part of the standard BED columns but added here for completeness
transcript_id = row["Transcript"]
# Writing only standard BED columns; additional columns can be appended as needed
bed_file.write(f"{chrom}\t{start}\t{end}\t{gRNA}\t{score}\t{strand}\n")
def create_csv_from_df(df, output_path):
df.to_csv(output_path, index=False)
|