supercat666's picture
add igv
78c921d
raw
history blame
4.89 kB
// automatically generated by the FlatBuffers compiler, do not modify
import * as flatbuffers from 'flatbuffers';
import { Buffer } from './buffer.js';
import { Int } from './int.js';
/**
* ----------------------------------------------------------------------
* EXPERIMENTAL: Data structures for sparse tensors
* Coordinate (COO) format of sparse tensor index.
*
* COO's index list are represented as a NxM matrix,
* where N is the number of non-zero values,
* and M is the number of dimensions of a sparse tensor.
*
* indicesBuffer stores the location and size of the data of this indices
* matrix. The value type and the stride of the indices matrix is
* specified in indicesType and indicesStrides fields.
*
* For example, let X be a 2x3x4x5 tensor, and it has the following
* 6 non-zero values:
* ```text
* X[0, 1, 2, 0] := 1
* X[1, 1, 2, 3] := 2
* X[0, 2, 1, 0] := 3
* X[0, 1, 3, 0] := 4
* X[0, 1, 2, 1] := 5
* X[1, 2, 0, 4] := 6
* ```
* In COO format, the index matrix of X is the following 4x6 matrix:
* ```text
* [[0, 0, 0, 0, 1, 1],
* [1, 1, 1, 2, 1, 2],
* [2, 2, 3, 1, 2, 0],
* [0, 1, 0, 0, 3, 4]]
* ```
* When isCanonical is true, the indices is sorted in lexicographical order
* (row-major order), and it does not have duplicated entries. Otherwise,
* the indices may not be sorted, or may have duplicated entries.
*/
export class SparseTensorIndexCOO {
bb: flatbuffers.ByteBuffer|null = null;
bb_pos = 0;
__init(i:number, bb:flatbuffers.ByteBuffer):SparseTensorIndexCOO {
this.bb_pos = i;
this.bb = bb;
return this;
}
static getRootAsSparseTensorIndexCOO(bb:flatbuffers.ByteBuffer, obj?:SparseTensorIndexCOO):SparseTensorIndexCOO {
return (obj || new SparseTensorIndexCOO()).__init(bb.readInt32(bb.position()) + bb.position(), bb);
}
static getSizePrefixedRootAsSparseTensorIndexCOO(bb:flatbuffers.ByteBuffer, obj?:SparseTensorIndexCOO):SparseTensorIndexCOO {
bb.setPosition(bb.position() + flatbuffers.SIZE_PREFIX_LENGTH);
return (obj || new SparseTensorIndexCOO()).__init(bb.readInt32(bb.position()) + bb.position(), bb);
}
/**
* The type of values in indicesBuffer
*/
indicesType(obj?:Int):Int|null {
const offset = this.bb!.__offset(this.bb_pos, 4);
return offset ? (obj || new Int()).__init(this.bb!.__indirect(this.bb_pos + offset), this.bb!) : null;
}
/**
* Non-negative byte offsets to advance one value cell along each dimension
* If omitted, default to row-major order (C-like).
*/
indicesStrides(index: number):flatbuffers.Long|null {
const offset = this.bb!.__offset(this.bb_pos, 6);
return offset ? this.bb!.readInt64(this.bb!.__vector(this.bb_pos + offset) + index * 8) : this.bb!.createLong(0, 0);
}
indicesStridesLength():number {
const offset = this.bb!.__offset(this.bb_pos, 6);
return offset ? this.bb!.__vector_len(this.bb_pos + offset) : 0;
}
/**
* The location and size of the indices matrix's data
*/
indicesBuffer(obj?:Buffer):Buffer|null {
const offset = this.bb!.__offset(this.bb_pos, 8);
return offset ? (obj || new Buffer()).__init(this.bb_pos + offset, this.bb!) : null;
}
/**
* This flag is true if and only if the indices matrix is sorted in
* row-major order, and does not have duplicated entries.
* This sort order is the same as of Tensorflow's SparseTensor,
* but it is inverse order of SciPy's canonical coo_matrix
* (SciPy employs column-major order for its coo_matrix).
*/
isCanonical():boolean {
const offset = this.bb!.__offset(this.bb_pos, 10);
return offset ? !!this.bb!.readInt8(this.bb_pos + offset) : false;
}
static startSparseTensorIndexCOO(builder:flatbuffers.Builder) {
builder.startObject(4);
}
static addIndicesType(builder:flatbuffers.Builder, indicesTypeOffset:flatbuffers.Offset) {
builder.addFieldOffset(0, indicesTypeOffset, 0);
}
static addIndicesStrides(builder:flatbuffers.Builder, indicesStridesOffset:flatbuffers.Offset) {
builder.addFieldOffset(1, indicesStridesOffset, 0);
}
static createIndicesStridesVector(builder:flatbuffers.Builder, data:flatbuffers.Long[]):flatbuffers.Offset {
builder.startVector(8, data.length, 8);
for (let i = data.length - 1; i >= 0; i--) {
builder.addInt64(data[i]!);
}
return builder.endVector();
}
static startIndicesStridesVector(builder:flatbuffers.Builder, numElems:number) {
builder.startVector(8, numElems, 8);
}
static addIndicesBuffer(builder:flatbuffers.Builder, indicesBufferOffset:flatbuffers.Offset) {
builder.addFieldStruct(2, indicesBufferOffset, 0);
}
static addIsCanonical(builder:flatbuffers.Builder, isCanonical:boolean) {
builder.addFieldInt8(3, +isCanonical, +false);
}
static endSparseTensorIndexCOO(builder:flatbuffers.Builder):flatbuffers.Offset {
const offset = builder.endObject();
builder.requiredField(offset, 4) // indicesType
builder.requiredField(offset, 8) // indicesBuffer
return offset;
}
}