Spaces:
Running
Running
// automatically generated by the FlatBuffers compiler, do not modify | |
import * as flatbuffers from 'flatbuffers'; | |
import { Buffer } from './buffer.js'; | |
import { Int } from './int.js'; | |
/** | |
* ---------------------------------------------------------------------- | |
* EXPERIMENTAL: Data structures for sparse tensors | |
* Coordinate (COO) format of sparse tensor index. | |
* | |
* COO's index list are represented as a NxM matrix, | |
* where N is the number of non-zero values, | |
* and M is the number of dimensions of a sparse tensor. | |
* | |
* indicesBuffer stores the location and size of the data of this indices | |
* matrix. The value type and the stride of the indices matrix is | |
* specified in indicesType and indicesStrides fields. | |
* | |
* For example, let X be a 2x3x4x5 tensor, and it has the following | |
* 6 non-zero values: | |
* ```text | |
* X[0, 1, 2, 0] := 1 | |
* X[1, 1, 2, 3] := 2 | |
* X[0, 2, 1, 0] := 3 | |
* X[0, 1, 3, 0] := 4 | |
* X[0, 1, 2, 1] := 5 | |
* X[1, 2, 0, 4] := 6 | |
* ``` | |
* In COO format, the index matrix of X is the following 4x6 matrix: | |
* ```text | |
* [[0, 0, 0, 0, 1, 1], | |
* [1, 1, 1, 2, 1, 2], | |
* [2, 2, 3, 1, 2, 0], | |
* [0, 1, 0, 0, 3, 4]] | |
* ``` | |
* When isCanonical is true, the indices is sorted in lexicographical order | |
* (row-major order), and it does not have duplicated entries. Otherwise, | |
* the indices may not be sorted, or may have duplicated entries. | |
*/ | |
export class SparseTensorIndexCOO { | |
bb: flatbuffers.ByteBuffer|null = null; | |
bb_pos = 0; | |
__init(i:number, bb:flatbuffers.ByteBuffer):SparseTensorIndexCOO { | |
this.bb_pos = i; | |
this.bb = bb; | |
return this; | |
} | |
static getRootAsSparseTensorIndexCOO(bb:flatbuffers.ByteBuffer, obj?:SparseTensorIndexCOO):SparseTensorIndexCOO { | |
return (obj || new SparseTensorIndexCOO()).__init(bb.readInt32(bb.position()) + bb.position(), bb); | |
} | |
static getSizePrefixedRootAsSparseTensorIndexCOO(bb:flatbuffers.ByteBuffer, obj?:SparseTensorIndexCOO):SparseTensorIndexCOO { | |
bb.setPosition(bb.position() + flatbuffers.SIZE_PREFIX_LENGTH); | |
return (obj || new SparseTensorIndexCOO()).__init(bb.readInt32(bb.position()) + bb.position(), bb); | |
} | |
/** | |
* The type of values in indicesBuffer | |
*/ | |
indicesType(obj?:Int):Int|null { | |
const offset = this.bb!.__offset(this.bb_pos, 4); | |
return offset ? (obj || new Int()).__init(this.bb!.__indirect(this.bb_pos + offset), this.bb!) : null; | |
} | |
/** | |
* Non-negative byte offsets to advance one value cell along each dimension | |
* If omitted, default to row-major order (C-like). | |
*/ | |
indicesStrides(index: number):flatbuffers.Long|null { | |
const offset = this.bb!.__offset(this.bb_pos, 6); | |
return offset ? this.bb!.readInt64(this.bb!.__vector(this.bb_pos + offset) + index * 8) : this.bb!.createLong(0, 0); | |
} | |
indicesStridesLength():number { | |
const offset = this.bb!.__offset(this.bb_pos, 6); | |
return offset ? this.bb!.__vector_len(this.bb_pos + offset) : 0; | |
} | |
/** | |
* The location and size of the indices matrix's data | |
*/ | |
indicesBuffer(obj?:Buffer):Buffer|null { | |
const offset = this.bb!.__offset(this.bb_pos, 8); | |
return offset ? (obj || new Buffer()).__init(this.bb_pos + offset, this.bb!) : null; | |
} | |
/** | |
* This flag is true if and only if the indices matrix is sorted in | |
* row-major order, and does not have duplicated entries. | |
* This sort order is the same as of Tensorflow's SparseTensor, | |
* but it is inverse order of SciPy's canonical coo_matrix | |
* (SciPy employs column-major order for its coo_matrix). | |
*/ | |
isCanonical():boolean { | |
const offset = this.bb!.__offset(this.bb_pos, 10); | |
return offset ? !!this.bb!.readInt8(this.bb_pos + offset) : false; | |
} | |
static startSparseTensorIndexCOO(builder:flatbuffers.Builder) { | |
builder.startObject(4); | |
} | |
static addIndicesType(builder:flatbuffers.Builder, indicesTypeOffset:flatbuffers.Offset) { | |
builder.addFieldOffset(0, indicesTypeOffset, 0); | |
} | |
static addIndicesStrides(builder:flatbuffers.Builder, indicesStridesOffset:flatbuffers.Offset) { | |
builder.addFieldOffset(1, indicesStridesOffset, 0); | |
} | |
static createIndicesStridesVector(builder:flatbuffers.Builder, data:flatbuffers.Long[]):flatbuffers.Offset { | |
builder.startVector(8, data.length, 8); | |
for (let i = data.length - 1; i >= 0; i--) { | |
builder.addInt64(data[i]!); | |
} | |
return builder.endVector(); | |
} | |
static startIndicesStridesVector(builder:flatbuffers.Builder, numElems:number) { | |
builder.startVector(8, numElems, 8); | |
} | |
static addIndicesBuffer(builder:flatbuffers.Builder, indicesBufferOffset:flatbuffers.Offset) { | |
builder.addFieldStruct(2, indicesBufferOffset, 0); | |
} | |
static addIsCanonical(builder:flatbuffers.Builder, isCanonical:boolean) { | |
builder.addFieldInt8(3, +isCanonical, +false); | |
} | |
static endSparseTensorIndexCOO(builder:flatbuffers.Builder):flatbuffers.Offset { | |
const offset = builder.endObject(); | |
builder.requiredField(offset, 4) // indicesType | |
builder.requiredField(offset, 8) // indicesBuffer | |
return offset; | |
} | |
} | |