Spaces:
Running
Running
supercat666
commited on
Commit
•
3c85094
1
Parent(s):
fcd198b
add visualization
Browse files- app.py +17 -25
- requirements.txt +2 -1
app.py
CHANGED
@@ -4,10 +4,10 @@ import cas9on
|
|
4 |
import cas9off
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
7 |
-
|
8 |
import numpy as np
|
9 |
from pathlib import Path
|
10 |
-
|
11 |
|
12 |
# title and documentation
|
13 |
st.markdown(Path('crisprTool.md').read_text(), unsafe_allow_html=True)
|
@@ -103,38 +103,30 @@ if selected_model == 'Cas9':
|
|
103 |
# Process predictions
|
104 |
if predict_button and gene_symbol:
|
105 |
predictions = cas9on.process_gene(gene_symbol, cas9on_path)
|
106 |
-
# Sort predictions by the 'Prediction' score in descending order and take the top 10
|
107 |
sorted_predictions = sorted(predictions, key=lambda x: x[-1], reverse=True)[:10]
|
108 |
st.session_state['on_target_results'] = sorted_predictions
|
109 |
|
110 |
-
# On-target results display
|
111 |
if 'on_target_results' in st.session_state and st.session_state['on_target_results']:
|
112 |
-
# Convert the results to a pandas DataFrame for better display
|
113 |
df = pd.DataFrame(st.session_state['on_target_results'],
|
114 |
columns=["Gene ID", "Start Pos", "End Pos", "Strand", "gRNA", "Prediction"])
|
115 |
st.write('Top on-target predictions:')
|
116 |
st.dataframe(df)
|
117 |
|
118 |
-
#
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
label='Download all on-target predictions',
|
134 |
-
data=full_predictions_csv,
|
135 |
-
file_name='on_target_results.csv',
|
136 |
-
mime='text/csv'
|
137 |
-
)
|
138 |
|
139 |
elif target_selection == 'off-target':
|
140 |
ENTRY_METHODS = dict(
|
|
|
4 |
import cas9off
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
7 |
+
from pygenomeviz import GenomeViz
|
8 |
import numpy as np
|
9 |
from pathlib import Path
|
10 |
+
|
11 |
|
12 |
# title and documentation
|
13 |
st.markdown(Path('crisprTool.md').read_text(), unsafe_allow_html=True)
|
|
|
103 |
# Process predictions
|
104 |
if predict_button and gene_symbol:
|
105 |
predictions = cas9on.process_gene(gene_symbol, cas9on_path)
|
|
|
106 |
sorted_predictions = sorted(predictions, key=lambda x: x[-1], reverse=True)[:10]
|
107 |
st.session_state['on_target_results'] = sorted_predictions
|
108 |
|
|
|
109 |
if 'on_target_results' in st.session_state and st.session_state['on_target_results']:
|
|
|
110 |
df = pd.DataFrame(st.session_state['on_target_results'],
|
111 |
columns=["Gene ID", "Start Pos", "End Pos", "Strand", "gRNA", "Prediction"])
|
112 |
st.write('Top on-target predictions:')
|
113 |
st.dataframe(df)
|
114 |
|
115 |
+
# Initialize GenomeViz
|
116 |
+
gv = GenomeViz()
|
117 |
+
genome_size = max(
|
118 |
+
df["End Pos"]) # Assuming the max end position approximates the genome size for visualization purposes
|
119 |
+
track = gv.add_feature_track("CRISPR Targets", genome_size)
|
120 |
+
|
121 |
+
for _, row in df.iterrows():
|
122 |
+
start, end, strand = row["Start Pos"], row["End Pos"], row["Strand"]
|
123 |
+
label = row["gRNA"]
|
124 |
+
track.add_feature(start, end, strand, label=label)
|
125 |
+
|
126 |
+
# Save and display the visualization
|
127 |
+
gv_fig_path = "crispr_targets.png"
|
128 |
+
gv.savefig(gv_fig_path)
|
129 |
+
st.image(gv_fig_path, caption="CRISPR Targets Visualization")
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
elif target_selection == 'off-target':
|
132 |
ENTRY_METHODS = dict(
|
requirements.txt
CHANGED
@@ -3,4 +3,5 @@ biopython==1.80
|
|
3 |
pandas==1.5.2
|
4 |
tensorflow==2.11.0
|
5 |
tensorflow-probability==0.19.0
|
6 |
-
plotly==5.18.0
|
|
|
|
3 |
pandas==1.5.2
|
4 |
tensorflow==2.11.0
|
5 |
tensorflow-probability==0.19.0
|
6 |
+
plotly==5.18.0
|
7 |
+
pygenomeviz
|