Spaces:
Running
Running
supercat666
commited on
Commit
•
c0e089e
1
Parent(s):
0d0c645
fixed cas9off
Browse files- app.py +13 -2
- cas9off.py +38 -0
app.py
CHANGED
@@ -95,6 +95,7 @@ if selected_model == 'Cas9':
|
|
95 |
|
96 |
pass
|
97 |
elif target_selection == 'off-target':
|
|
|
98 |
ENTRY_METHODS = dict(
|
99 |
manual='Manual entry of target sequence',
|
100 |
txt="txt file upload"
|
@@ -130,8 +131,18 @@ if selected_model == 'Cas9':
|
|
130 |
)
|
131 |
|
132 |
# prediction button
|
133 |
-
st.button(
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
progress = st.empty()
|
136 |
|
137 |
# input error display
|
|
|
95 |
|
96 |
pass
|
97 |
elif target_selection == 'off-target':
|
98 |
+
|
99 |
ENTRY_METHODS = dict(
|
100 |
manual='Manual entry of target sequence',
|
101 |
txt="txt file upload"
|
|
|
131 |
)
|
132 |
|
133 |
# prediction button
|
134 |
+
if st.button('Predict off-target effects'):
|
135 |
+
if st.session_state.entry_method == 'manual':
|
136 |
+
user_input = st.session_state.manual_entry
|
137 |
+
predictions = cas9off.process_input_and_predict(user_input, input_type='manual')
|
138 |
+
elif st.session_state.entry_method == 'txt':
|
139 |
+
uploaded_file = st.session_state.txt_entry
|
140 |
+
if uploaded_file is not None:
|
141 |
+
# Read the uploaded file content
|
142 |
+
file_content = uploaded_file.getvalue().decode("utf-8")
|
143 |
+
predictions = cas9off.process_input_and_predict(file_content, input_type='manual')
|
144 |
+
|
145 |
+
st.session_state.off_target_results = predictions
|
146 |
progress = st.empty()
|
147 |
|
148 |
# input error display
|
cas9off.py
CHANGED
@@ -81,6 +81,44 @@ class Encoder:
|
|
81 |
on_off_dim7_codes.append(np.concatenate((diff_code, dir_code)))
|
82 |
self.on_off_code = np.array(on_off_dim7_codes)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
def encode_on_off_seq_pairs(input_file):
|
85 |
inputs = pd.read_csv(input_file, delimiter=",", header=None, names=['on_seq', 'off_seq'])
|
86 |
input_codes = []
|
|
|
81 |
on_off_dim7_codes.append(np.concatenate((diff_code, dir_code)))
|
82 |
self.on_off_code = np.array(on_off_dim7_codes)
|
83 |
|
84 |
+
|
85 |
+
def process_input_and_predict(input_data, input_type='manual'):
|
86 |
+
"""
|
87 |
+
Process the user input and predict using the CRISPR-Net model.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
input_data: A string of manual input or the path to an input file.
|
91 |
+
input_type: 'manual' for manual input, 'file' for file input.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
A DataFrame with the off-target predictions.
|
95 |
+
"""
|
96 |
+
|
97 |
+
if input_type == 'manual':
|
98 |
+
# Process manual input string into DataFrame
|
99 |
+
sequences = [seq.split(',') for seq in input_data.split('\n')]
|
100 |
+
inputs = pd.DataFrame(sequences, columns=['on_seq', 'off_seq'])
|
101 |
+
elif input_type == 'file':
|
102 |
+
# Read sequences from a file into DataFrame
|
103 |
+
inputs = pd.read_csv(input_data, delimiter=",", header=None, names=['on_seq', 'off_seq'])
|
104 |
+
|
105 |
+
# Encode the sequences
|
106 |
+
input_codes = []
|
107 |
+
for idx, row in inputs.iterrows():
|
108 |
+
on_seq = row['on_seq']
|
109 |
+
off_seq = row['off_seq']
|
110 |
+
en = Encoder(on_seq=on_seq, off_seq=off_seq)
|
111 |
+
input_codes.append(en.on_off_code)
|
112 |
+
|
113 |
+
# Convert to numpy array and reshape for the model
|
114 |
+
input_codes = np.array(input_codes)
|
115 |
+
input_codes = input_codes.reshape((len(input_codes), 1, 24, 7))
|
116 |
+
|
117 |
+
# Predict with CRISPR-Net model
|
118 |
+
inputs['CRISPR_Net_score'] = CRISPR_net_predict(input_codes)
|
119 |
+
|
120 |
+
return inputs
|
121 |
+
|
122 |
def encode_on_off_seq_pairs(input_file):
|
123 |
inputs = pd.read_csv(input_file, delimiter=",", header=None, names=['on_seq', 'off_seq'])
|
124 |
input_codes = []
|