Spaces:
Running
Running
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tiger
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
ENTRY_METHODS = dict(
|
8 |
+
manual='Manual entry of single transcript',
|
9 |
+
fasta="Fasta file upload (supports multiple transcripts if they have unique ID's)"
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
@st.cache_data
|
14 |
+
def convert_df(df):
|
15 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
16 |
+
return df.to_csv().encode('utf-8')
|
17 |
+
|
18 |
+
|
19 |
+
def mode_change_callback():
|
20 |
+
if st.session_state.mode in {tiger.RUN_MODES['all'], tiger.RUN_MODES['titration']}: # TODO: support titration
|
21 |
+
st.session_state.check_off_targets = False
|
22 |
+
st.session_state.disable_off_target_checkbox = True
|
23 |
+
else:
|
24 |
+
st.session_state.disable_off_target_checkbox = False
|
25 |
+
|
26 |
+
|
27 |
+
def progress_update(update_text, percent_complete):
|
28 |
+
with progress.container():
|
29 |
+
st.write(update_text)
|
30 |
+
st.progress(percent_complete / 100)
|
31 |
+
|
32 |
+
|
33 |
+
def initiate_run():
|
34 |
+
|
35 |
+
# initialize state variables
|
36 |
+
st.session_state.transcripts = None
|
37 |
+
st.session_state.input_error = None
|
38 |
+
st.session_state.on_target = None
|
39 |
+
st.session_state.titration = None
|
40 |
+
st.session_state.off_target = None
|
41 |
+
|
42 |
+
# initialize transcript DataFrame
|
43 |
+
transcripts = pd.DataFrame(columns=[tiger.ID_COL, tiger.SEQ_COL])
|
44 |
+
|
45 |
+
# manual entry
|
46 |
+
if st.session_state.entry_method == ENTRY_METHODS['manual']:
|
47 |
+
transcripts = pd.DataFrame({
|
48 |
+
tiger.ID_COL: ['ManualEntry'],
|
49 |
+
tiger.SEQ_COL: [st.session_state.manual_entry]
|
50 |
+
}).set_index(tiger.ID_COL)
|
51 |
+
|
52 |
+
# fasta file upload
|
53 |
+
elif st.session_state.entry_method == ENTRY_METHODS['fasta']:
|
54 |
+
if st.session_state.fasta_entry is not None:
|
55 |
+
fasta_path = st.session_state.fasta_entry.name
|
56 |
+
with open(fasta_path, 'w') as f:
|
57 |
+
f.write(st.session_state.fasta_entry.getvalue().decode('utf-8'))
|
58 |
+
transcripts = tiger.load_transcripts([fasta_path], enforce_unique_ids=False)
|
59 |
+
os.remove(fasta_path)
|
60 |
+
|
61 |
+
# convert to upper case as used by tokenizer
|
62 |
+
transcripts[tiger.SEQ_COL] = transcripts[tiger.SEQ_COL].apply(lambda s: s.upper().replace('U', 'T'))
|
63 |
+
|
64 |
+
# ensure all transcripts have unique identifiers
|
65 |
+
if transcripts.index.has_duplicates:
|
66 |
+
st.session_state.input_error = "Duplicate transcript ID's detected in fasta file"
|
67 |
+
|
68 |
+
# ensure all transcripts only contain nucleotides A, C, G, T, and wildcard N
|
69 |
+
elif not all(transcripts[tiger.SEQ_COL].apply(lambda s: set(s).issubset(tiger.NUCLEOTIDE_TOKENS.keys()))):
|
70 |
+
st.session_state.input_error = 'Transcript(s) must only contain upper or lower case A, C, G, and Ts or Us'
|
71 |
+
|
72 |
+
# ensure all transcripts satisfy length requirements
|
73 |
+
elif any(transcripts[tiger.SEQ_COL].apply(lambda s: len(s) < tiger.TARGET_LEN)):
|
74 |
+
st.session_state.input_error = 'Transcript(s) must be at least {:d} bases.'.format(tiger.TARGET_LEN)
|
75 |
+
|
76 |
+
# run model if we have any transcripts
|
77 |
+
elif len(transcripts) > 0:
|
78 |
+
st.session_state.transcripts = transcripts
|
79 |
+
|
80 |
+
|
81 |
+
if __name__ == '__main__':
|
82 |
+
|
83 |
+
# app initialization
|
84 |
+
if 'mode' not in st.session_state:
|
85 |
+
st.session_state.mode = tiger.RUN_MODES['all']
|
86 |
+
st.session_state.disable_off_target_checkbox = True
|
87 |
+
if 'entry_method' not in st.session_state:
|
88 |
+
st.session_state.entry_method = ENTRY_METHODS['manual']
|
89 |
+
if 'transcripts' not in st.session_state:
|
90 |
+
st.session_state.transcripts = None
|
91 |
+
if 'input_error' not in st.session_state:
|
92 |
+
st.session_state.input_error = None
|
93 |
+
if 'on_target' not in st.session_state:
|
94 |
+
st.session_state.on_target = None
|
95 |
+
if 'titration' not in st.session_state:
|
96 |
+
st.session_state.titration = None
|
97 |
+
if 'off_target' not in st.session_state:
|
98 |
+
st.session_state.off_target = None
|
99 |
+
|
100 |
+
# title and documentation
|
101 |
+
st.markdown(Path('tiger.md').read_text(), unsafe_allow_html=True)
|
102 |
+
st.divider()
|
103 |
+
|
104 |
+
# mode selection
|
105 |
+
col1, col2 = st.columns([0.65, 0.35])
|
106 |
+
with col1:
|
107 |
+
st.radio(
|
108 |
+
label='What do you want to predict?',
|
109 |
+
options=tuple(tiger.RUN_MODES.values()),
|
110 |
+
key='mode',
|
111 |
+
on_change=mode_change_callback,
|
112 |
+
disabled=st.session_state.transcripts is not None,
|
113 |
+
)
|
114 |
+
with col2:
|
115 |
+
st.checkbox(
|
116 |
+
label='Find off-target effects (slow)',
|
117 |
+
key='check_off_targets',
|
118 |
+
disabled=st.session_state.disable_off_target_checkbox or st.session_state.transcripts is not None
|
119 |
+
)
|
120 |
+
|
121 |
+
# transcript entry
|
122 |
+
st.selectbox(
|
123 |
+
label='How would you like to provide transcript(s) of interest?',
|
124 |
+
options=ENTRY_METHODS.values(),
|
125 |
+
key='entry_method',
|
126 |
+
disabled=st.session_state.transcripts is not None
|
127 |
+
)
|
128 |
+
if st.session_state.entry_method == ENTRY_METHODS['manual']:
|
129 |
+
st.text_input(
|
130 |
+
label='Enter a target transcript:',
|
131 |
+
key='manual_entry',
|
132 |
+
placeholder='Upper or lower case',
|
133 |
+
disabled=st.session_state.transcripts is not None
|
134 |
+
)
|
135 |
+
elif st.session_state.entry_method == ENTRY_METHODS['fasta']:
|
136 |
+
st.file_uploader(
|
137 |
+
label='Upload a fasta file:',
|
138 |
+
key='fasta_entry',
|
139 |
+
disabled=st.session_state.transcripts is not None
|
140 |
+
)
|
141 |
+
|
142 |
+
# let's go!
|
143 |
+
st.button(label='Get predictions!', on_click=initiate_run, disabled=st.session_state.transcripts is not None)
|
144 |
+
progress = st.empty()
|
145 |
+
|
146 |
+
# input error
|
147 |
+
error = st.empty()
|
148 |
+
if st.session_state.input_error is not None:
|
149 |
+
error.error(st.session_state.input_error, icon="🚨")
|
150 |
+
else:
|
151 |
+
error.empty()
|
152 |
+
|
153 |
+
# on-target results
|
154 |
+
on_target_results = st.empty()
|
155 |
+
if st.session_state.on_target is not None:
|
156 |
+
with on_target_results.container():
|
157 |
+
st.write('On-target predictions:', st.session_state.on_target)
|
158 |
+
st.download_button(
|
159 |
+
label='Download on-target predictions',
|
160 |
+
data=convert_df(st.session_state.on_target),
|
161 |
+
file_name='on_target.csv',
|
162 |
+
mime='text/csv'
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
on_target_results.empty()
|
166 |
+
|
167 |
+
# titration results
|
168 |
+
titration_results = st.empty()
|
169 |
+
if st.session_state.titration is not None:
|
170 |
+
with titration_results.container():
|
171 |
+
st.write('Titration predictions:', st.session_state.titration)
|
172 |
+
st.download_button(
|
173 |
+
label='Download titration predictions',
|
174 |
+
data=convert_df(st.session_state.titration),
|
175 |
+
file_name='titration.csv',
|
176 |
+
mime='text/csv'
|
177 |
+
)
|
178 |
+
else:
|
179 |
+
titration_results.empty()
|
180 |
+
|
181 |
+
# off-target results
|
182 |
+
off_target_results = st.empty()
|
183 |
+
if st.session_state.off_target is not None:
|
184 |
+
with off_target_results.container():
|
185 |
+
if len(st.session_state.off_target) > 0:
|
186 |
+
st.write('Off-target predictions:', st.session_state.off_target)
|
187 |
+
st.download_button(
|
188 |
+
label='Download off-target predictions',
|
189 |
+
data=convert_df(st.session_state.off_target),
|
190 |
+
file_name='off_target.csv',
|
191 |
+
mime='text/csv'
|
192 |
+
)
|
193 |
+
else:
|
194 |
+
st.write('We did not find any off-target effects!')
|
195 |
+
else:
|
196 |
+
off_target_results.empty()
|
197 |
+
|
198 |
+
# keep trying to run model until we clear inputs (streamlit UI changes can induce race-condition reruns)
|
199 |
+
if st.session_state.transcripts is not None:
|
200 |
+
st.session_state.on_target, st.session_state.titration, st.session_state.off_target = tiger.tiger_exhibit(
|
201 |
+
transcripts=st.session_state.transcripts,
|
202 |
+
mode={v: k for k, v in tiger.RUN_MODES.items()}[st.session_state.mode],
|
203 |
+
check_off_targets=st.session_state.check_off_targets,
|
204 |
+
status_update_fn=progress_update
|
205 |
+
)
|
206 |
+
st.session_state.transcripts = None
|
207 |
+
st.experimental_rerun()
|