Spaces:
Runtime error
Runtime error
File size: 3,001 Bytes
28dc120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import cv2
import numpy as np
import torch
import threading
from torchvision import transforms
from clip.clipseg import CLIPDensePredT
import numpy as np
from roop.typing import Frame
THREAD_LOCK_CLIP = threading.Lock()
class Mask_Clip2Seg():
plugin_options:dict = None
model_clip = None
processorname = 'clip2seg'
type = 'mask'
def Initialize(self, plugin_options:dict):
if self.plugin_options is not None:
if self.plugin_options["devicename"] != plugin_options["devicename"]:
self.Release()
self.plugin_options = plugin_options
if self.model_clip is None:
self.model_clip = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, complex_trans_conv=True)
self.model_clip.eval();
self.model_clip.load_state_dict(torch.load('models/CLIP/rd64-uni-refined.pth', map_location=torch.device('cpu')), strict=False)
device = torch.device(self.plugin_options["devicename"])
self.model_clip.to(device)
def Run(self, img1, keywords:str) -> Frame:
if keywords is None or len(keywords) < 1 or img1 is None:
return img1
source_image_small = cv2.resize(img1, (256,256))
img_mask = np.full((source_image_small.shape[0],source_image_small.shape[1]), 0, dtype=np.float32)
mask_border = 1
l = 0
t = 0
r = 1
b = 1
mask_blur = 5
clip_blur = 5
img_mask = cv2.rectangle(img_mask, (mask_border+int(l), mask_border+int(t)),
(256 - mask_border-int(r), 256-mask_border-int(b)), (255, 255, 255), -1)
img_mask = cv2.GaussianBlur(img_mask, (mask_blur*2+1,mask_blur*2+1), 0)
img_mask /= 255
input_image = source_image_small
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
transforms.Resize((256, 256)),
])
img = transform(input_image).unsqueeze(0)
thresh = 0.5
prompts = keywords.split(',')
with THREAD_LOCK_CLIP:
with torch.no_grad():
preds = self.model_clip(img.repeat(len(prompts),1,1,1), prompts)[0]
clip_mask = torch.sigmoid(preds[0][0])
for i in range(len(prompts)-1):
clip_mask += torch.sigmoid(preds[i+1][0])
clip_mask = clip_mask.data.cpu().numpy()
np.clip(clip_mask, 0, 1)
clip_mask[clip_mask>thresh] = 1.0
clip_mask[clip_mask<=thresh] = 0.0
kernel = np.ones((5, 5), np.float32)
clip_mask = cv2.dilate(clip_mask, kernel, iterations=1)
clip_mask = cv2.GaussianBlur(clip_mask, (clip_blur*2+1,clip_blur*2+1), 0)
img_mask *= clip_mask
img_mask[img_mask<0.0] = 0.0
return img_mask
def Release(self):
self.model_clip = None
|