ru / Enhance_CodeFormer.py
Nirmal00001123's picture
Upload 66 files
28dc120 verified
raw
history blame
2.73 kB
from typing import Any, List, Callable
import cv2
import numpy as np
import onnxruntime
import roop.globals
from roop.typing import Face, Frame, FaceSet
from roop.utilities import resolve_relative_path
class Enhance_CodeFormer():
model_codeformer = None
plugin_options:dict = None
processorname = 'codeformer'
type = 'enhance'
def Initialize(self, plugin_options:dict):
if self.plugin_options is not None:
if self.plugin_options["devicename"] != plugin_options["devicename"]:
self.Release()
self.plugin_options = plugin_options
if self.model_codeformer is None:
# replace Mac mps with cpu for the moment
self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
model_path = resolve_relative_path('../models/CodeFormer/CodeFormerv0.1.onnx')
self.model_codeformer = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
self.model_inputs = self.model_codeformer.get_inputs()
model_outputs = self.model_codeformer.get_outputs()
self.io_binding = self.model_codeformer.io_binding()
self.io_binding.bind_cpu_input(self.model_inputs[1].name, np.array([0.5]))
self.io_binding.bind_output(model_outputs[0].name, self.devicename)
def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
input_size = temp_frame.shape[1]
# preprocess
temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
temp_frame = temp_frame.astype('float32') / 255.0
temp_frame = (temp_frame - 0.5) / 0.5
temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame.astype(np.float32))
self.model_codeformer.run_with_iobinding(self.io_binding)
ort_outs = self.io_binding.copy_outputs_to_cpu()
result = ort_outs[0][0]
del ort_outs
# post-process
result = result.transpose((1, 2, 0))
un_min = -1.0
un_max = 1.0
result = np.clip(result, un_min, un_max)
result = (result - un_min) / (un_max - un_min)
result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
result = (result * 255.0).round()
scale_factor = int(result.shape[1] / input_size)
return result.astype(np.uint8), scale_factor
def Release(self):
del self.model_codeformer
self.model_codeformer = None
del self.io_binding
self.io_binding = None