Spaces:
Runtime error
Runtime error
from typing import Any, List, Callable | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.nn.utils.spectral_norm as SpectralNorm | |
import threading | |
from torchvision.ops import roi_align | |
from math import sqrt | |
from torchvision.transforms.functional import normalize | |
from roop.typing import Face, Frame, FaceSet | |
THREAD_LOCK_DMDNET = threading.Lock() | |
class Enhance_DMDNet(): | |
plugin_options:dict = None | |
model_dmdnet = None | |
torchdevice = None | |
processorname = 'dmdnet' | |
type = 'enhance' | |
def Initialize(self, plugin_options:dict): | |
if self.plugin_options is not None: | |
if self.plugin_options["devicename"] != plugin_options["devicename"]: | |
self.Release() | |
self.plugin_options = plugin_options | |
if self.model_dmdnet is None: | |
self.model_dmdnet = self.create(self.plugin_options["devicename"]) | |
# temp_frame already cropped+aligned, bbox not | |
def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame: | |
input_size = temp_frame.shape[1] | |
result = self.enhance_face(source_faceset, temp_frame, target_face) | |
scale_factor = int(result.shape[1] / input_size) | |
return result.astype(np.uint8), scale_factor | |
def Release(self): | |
self.model_gfpgan = None | |
# https://stackoverflow.com/a/67174339 | |
def landmarks106_to_68(self, pt106): | |
map106to68=[1,10,12,14,16,3,5,7,0,23,21,19,32,30,28,26,17, | |
43,48,49,51,50, | |
102,103,104,105,101, | |
72,73,74,86,78,79,80,85,84, | |
35,41,42,39,37,36, | |
89,95,96,93,91,90, | |
52,64,63,71,67,68,61,58,59,53,56,55,65,66,62,70,69,57,60,54 | |
] | |
pt68 = [] | |
for i in range(68): | |
index = map106to68[i] | |
pt68.append(pt106[index]) | |
return pt68 | |
def check_bbox(self, imgs, boxes): | |
boxes = boxes.view(-1, 4, 4) | |
colors = [(0, 255, 0), (0, 255, 0), (255, 255, 0), (255, 0, 0)] | |
i = 0 | |
for img, box in zip(imgs, boxes): | |
img = (img + 1)/2 * 255 | |
img2 = img.permute(1, 2, 0).float().cpu().flip(2).numpy().copy() | |
for idx, point in enumerate(box): | |
cv2.rectangle(img2, (int(point[0]), int(point[1])), (int(point[2]), int(point[3])), color=colors[idx], thickness=2) | |
cv2.imwrite('dmdnet_{:02d}.png'.format(i), img2) | |
i += 1 | |
def trans_points2d(self, pts, M): | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for i in range(pts.shape[0]): | |
pt = pts[i] | |
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) | |
new_pt = np.dot(M, new_pt) | |
new_pts[i] = new_pt[0:2] | |
return new_pts | |
def enhance_face(self, ref_faceset: FaceSet, temp_frame, face: Face): | |
# preprocess | |
start_x, start_y, end_x, end_y = map(int, face['bbox']) | |
lm106 = face.landmark_2d_106 | |
lq_landmarks = np.asarray(self.landmarks106_to_68(lm106)) | |
if temp_frame.shape[0] != 512 or temp_frame.shape[1] != 512: | |
# scale to 512x512 | |
scale_factor = 512 / temp_frame.shape[1] | |
M = face.matrix * scale_factor | |
lq_landmarks = self.trans_points2d(lq_landmarks, M) | |
temp_frame = cv2.resize(temp_frame, (512,512), interpolation = cv2.INTER_AREA) | |
if temp_frame.ndim == 2: | |
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB) # GGG | |
# else: | |
# temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # RGB | |
lq = read_img_tensor(temp_frame) | |
LQLocs = get_component_location(lq_landmarks) | |
# self.check_bbox(lq, LQLocs.unsqueeze(0)) | |
# specific, change 1000 to 1 to activate | |
if len(ref_faceset.faces) > 1: | |
SpecificImgs = [] | |
SpecificLocs = [] | |
for i,face in enumerate(ref_faceset.faces): | |
lm106 = face.landmark_2d_106 | |
lq_landmarks = np.asarray(self.landmarks106_to_68(lm106)) | |
ref_image = ref_faceset.ref_images[i] | |
if ref_image.shape[0] != 512 or ref_image.shape[1] != 512: | |
# scale to 512x512 | |
scale_factor = 512 / ref_image.shape[1] | |
M = face.matrix * scale_factor | |
lq_landmarks = self.trans_points2d(lq_landmarks, M) | |
ref_image = cv2.resize(ref_image, (512,512), interpolation = cv2.INTER_AREA) | |
if ref_image.ndim == 2: | |
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB) # GGG | |
# else: | |
# temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # RGB | |
ref_tensor = read_img_tensor(ref_image) | |
ref_locs = get_component_location(lq_landmarks) | |
# self.check_bbox(ref_tensor, ref_locs.unsqueeze(0)) | |
SpecificImgs.append(ref_tensor) | |
SpecificLocs.append(ref_locs.unsqueeze(0)) | |
SpecificImgs = torch.cat(SpecificImgs, dim=0) | |
SpecificLocs = torch.cat(SpecificLocs, dim=0) | |
# check_bbox(SpecificImgs, SpecificLocs) | |
SpMem256, SpMem128, SpMem64 = self.model_dmdnet.generate_specific_dictionary(sp_imgs = SpecificImgs.to(self.torchdevice), sp_locs = SpecificLocs) | |
SpMem256Para = {} | |
SpMem128Para = {} | |
SpMem64Para = {} | |
for k, v in SpMem256.items(): | |
SpMem256Para[k] = v | |
for k, v in SpMem128.items(): | |
SpMem128Para[k] = v | |
for k, v in SpMem64.items(): | |
SpMem64Para[k] = v | |
else: | |
# generic | |
SpMem256Para, SpMem128Para, SpMem64Para = None, None, None | |
with torch.no_grad(): | |
with THREAD_LOCK_DMDNET: | |
try: | |
GenericResult, SpecificResult = self.model_dmdnet(lq = lq.to(self.torchdevice), loc = LQLocs.unsqueeze(0), sp_256 = SpMem256Para, sp_128 = SpMem128Para, sp_64 = SpMem64Para) | |
except Exception as e: | |
print(f'Error {e} there may be something wrong with the detected component locations.') | |
return temp_frame | |
if SpecificResult is not None: | |
save_specific = SpecificResult * 0.5 + 0.5 | |
save_specific = save_specific.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR | |
save_specific = np.clip(save_specific.float().cpu().numpy(), 0, 1) * 255.0 | |
temp_frame = save_specific.astype("uint8") | |
if False: | |
save_generic = GenericResult * 0.5 + 0.5 | |
save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR | |
save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0 | |
check_lq = lq * 0.5 + 0.5 | |
check_lq = check_lq.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR | |
check_lq = np.clip(check_lq.float().cpu().numpy(), 0, 1) * 255.0 | |
cv2.imwrite('dmdnet_comparison.png', cv2.cvtColor(np.hstack((check_lq, save_generic, save_specific)),cv2.COLOR_RGB2BGR)) | |
else: | |
save_generic = GenericResult * 0.5 + 0.5 | |
save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR | |
save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0 | |
temp_frame = save_generic.astype("uint8") | |
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_RGB2BGR) # RGB | |
return temp_frame | |
def create(self, devicename): | |
self.torchdevice = torch.device(devicename) | |
model_dmdnet = DMDNet().to(self.torchdevice) | |
weights = torch.load('./models/DMDNet.pth') | |
model_dmdnet.load_state_dict(weights, strict=True) | |
model_dmdnet.eval() | |
num_params = 0 | |
for param in model_dmdnet.parameters(): | |
num_params += param.numel() | |
return model_dmdnet | |
# print('{:>8s} : {}'.format('Using device', device)) | |
# print('{:>8s} : {:.2f}M'.format('Model params', num_params/1e6)) | |
def read_img_tensor(Img=None): #rgb -1~1 | |
Img = Img.transpose((2, 0, 1))/255.0 | |
Img = torch.from_numpy(Img).float() | |
normalize(Img, [0.5,0.5,0.5], [0.5,0.5,0.5], inplace=True) | |
ImgTensor = Img.unsqueeze(0) | |
return ImgTensor | |
def get_component_location(Landmarks, re_read=False): | |
if re_read: | |
ReadLandmark = [] | |
with open(Landmarks,'r') as f: | |
for line in f: | |
tmp = [float(i) for i in line.split(' ') if i != '\n'] | |
ReadLandmark.append(tmp) | |
ReadLandmark = np.array(ReadLandmark) # | |
Landmarks = np.reshape(ReadLandmark, [-1, 2]) # 68*2 | |
Map_LE_B = list(np.hstack((range(17,22), range(36,42)))) | |
Map_RE_B = list(np.hstack((range(22,27), range(42,48)))) | |
Map_LE = list(range(36,42)) | |
Map_RE = list(range(42,48)) | |
Map_NO = list(range(29,36)) | |
Map_MO = list(range(48,68)) | |
Landmarks[Landmarks>504]=504 | |
Landmarks[Landmarks<8]=8 | |
#left eye | |
Mean_LE = np.mean(Landmarks[Map_LE],0) | |
L_LE1 = Mean_LE[1] - np.min(Landmarks[Map_LE_B,1]) | |
L_LE1 = L_LE1 * 1.3 | |
L_LE2 = L_LE1 / 1.9 | |
L_LE_xy = L_LE1 + L_LE2 | |
L_LE_lt = [L_LE_xy/2, L_LE1] | |
L_LE_rb = [L_LE_xy/2, L_LE2] | |
Location_LE = np.hstack((Mean_LE - L_LE_lt + 1, Mean_LE + L_LE_rb)).astype(int) | |
#right eye | |
Mean_RE = np.mean(Landmarks[Map_RE],0) | |
L_RE1 = Mean_RE[1] - np.min(Landmarks[Map_RE_B,1]) | |
L_RE1 = L_RE1 * 1.3 | |
L_RE2 = L_RE1 / 1.9 | |
L_RE_xy = L_RE1 + L_RE2 | |
L_RE_lt = [L_RE_xy/2, L_RE1] | |
L_RE_rb = [L_RE_xy/2, L_RE2] | |
Location_RE = np.hstack((Mean_RE - L_RE_lt + 1, Mean_RE + L_RE_rb)).astype(int) | |
#nose | |
Mean_NO = np.mean(Landmarks[Map_NO],0) | |
L_NO1 =( np.max([Mean_NO[0] - Landmarks[31][0], Landmarks[35][0] - Mean_NO[0]])) * 1.25 | |
L_NO2 = (Landmarks[33][1] - Mean_NO[1]) * 1.1 | |
L_NO_xy = L_NO1 * 2 | |
L_NO_lt = [L_NO_xy/2, L_NO_xy - L_NO2] | |
L_NO_rb = [L_NO_xy/2, L_NO2] | |
Location_NO = np.hstack((Mean_NO - L_NO_lt + 1, Mean_NO + L_NO_rb)).astype(int) | |
#mouth | |
Mean_MO = np.mean(Landmarks[Map_MO],0) | |
L_MO = np.max((np.max(np.max(Landmarks[Map_MO],0) - np.min(Landmarks[Map_MO],0))/2,16)) * 1.1 | |
MO_O = Mean_MO - L_MO + 1 | |
MO_T = Mean_MO + L_MO | |
MO_T[MO_T>510]=510 | |
Location_MO = np.hstack((MO_O, MO_T)).astype(int) | |
return torch.cat([torch.FloatTensor(Location_LE).unsqueeze(0), torch.FloatTensor(Location_RE).unsqueeze(0), torch.FloatTensor(Location_NO).unsqueeze(0), torch.FloatTensor(Location_MO).unsqueeze(0)], dim=0) | |
def calc_mean_std_4D(feat, eps=1e-5): | |
# eps is a small value added to the variance to avoid divide-by-zero. | |
size = feat.size() | |
assert (len(size) == 4) | |
N, C = size[:2] | |
feat_var = feat.view(N, C, -1).var(dim=2) + eps | |
feat_std = feat_var.sqrt().view(N, C, 1, 1) | |
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1) | |
return feat_mean, feat_std | |
def adaptive_instance_normalization_4D(content_feat, style_feat): # content_feat is ref feature, style is degradate feature | |
size = content_feat.size() | |
style_mean, style_std = calc_mean_std_4D(style_feat) | |
content_mean, content_std = calc_mean_std_4D(content_feat) | |
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) | |
return normalized_feat * style_std.expand(size) + style_mean.expand(size) | |
def convU(in_channels, out_channels,conv_layer, norm_layer, kernel_size=3, stride=1,dilation=1, bias=True): | |
return nn.Sequential( | |
SpectralNorm(conv_layer(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(conv_layer(out_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)), | |
) | |
class MSDilateBlock(nn.Module): | |
def __init__(self, in_channels,conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, kernel_size=3, dilation=[1,1,1,1], bias=True): | |
super(MSDilateBlock, self).__init__() | |
self.conv1 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[0], bias=bias) | |
self.conv2 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[1], bias=bias) | |
self.conv3 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[2], bias=bias) | |
self.conv4 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[3], bias=bias) | |
self.convi = SpectralNorm(conv_layer(in_channels*4, in_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2, bias=bias)) | |
def forward(self, x): | |
conv1 = self.conv1(x) | |
conv2 = self.conv2(x) | |
conv3 = self.conv3(x) | |
conv4 = self.conv4(x) | |
cat = torch.cat([conv1, conv2, conv3, conv4], 1) | |
out = self.convi(cat) + x | |
return out | |
class AdaptiveInstanceNorm(nn.Module): | |
def __init__(self, in_channel): | |
super().__init__() | |
self.norm = nn.InstanceNorm2d(in_channel) | |
def forward(self, input, style): | |
style_mean, style_std = calc_mean_std_4D(style) | |
out = self.norm(input) | |
size = input.size() | |
out = style_std.expand(size) * out + style_mean.expand(size) | |
return out | |
class NoiseInjection(nn.Module): | |
def __init__(self, channel): | |
super().__init__() | |
self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1)) | |
def forward(self, image, noise): | |
if noise is None: | |
b, c, h, w = image.shape | |
noise = image.new_empty(b, 1, h, w).normal_() | |
return image + self.weight * noise | |
class StyledUpBlock(nn.Module): | |
def __init__(self, in_channel, out_channel, kernel_size=3, padding=1,upsample=False, noise_inject=False): | |
super().__init__() | |
self.noise_inject = noise_inject | |
if upsample: | |
self.conv1 = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), | |
SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)), | |
nn.LeakyReLU(0.2), | |
) | |
else: | |
self.conv1 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)), | |
) | |
self.convup = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), | |
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)), | |
) | |
if self.noise_inject: | |
self.noise1 = NoiseInjection(out_channel) | |
self.lrelu1 = nn.LeakyReLU(0.2) | |
self.ScaleModel1 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)) | |
) | |
self.ShiftModel1 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)), | |
) | |
def forward(self, input, style): | |
out = self.conv1(input) | |
out = self.lrelu1(out) | |
Shift1 = self.ShiftModel1(style) | |
Scale1 = self.ScaleModel1(style) | |
out = out * Scale1 + Shift1 | |
if self.noise_inject: | |
out = self.noise1(out, noise=None) | |
outup = self.convup(out) | |
return outup | |
#################################################################### | |
###############Face Dictionary Generator | |
#################################################################### | |
def AttentionBlock(in_channel): | |
return nn.Sequential( | |
SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), | |
) | |
class DilateResBlock(nn.Module): | |
def __init__(self, dim, dilation=[5,3] ): | |
super(DilateResBlock, self).__init__() | |
self.Res = nn.Sequential( | |
SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[0], dilation[0])), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[1], dilation[1])), | |
) | |
def forward(self, x): | |
out = x + self.Res(x) | |
return out | |
class KeyValue(nn.Module): | |
def __init__(self, indim, keydim, valdim): | |
super(KeyValue, self).__init__() | |
self.Key = nn.Sequential( | |
SpectralNorm(nn.Conv2d(indim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(keydim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)), | |
) | |
self.Value = nn.Sequential( | |
SpectralNorm(nn.Conv2d(indim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(valdim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)), | |
) | |
def forward(self, x): | |
return self.Key(x), self.Value(x) | |
class MaskAttention(nn.Module): | |
def __init__(self, indim): | |
super(MaskAttention, self).__init__() | |
self.conv1 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), | |
) | |
self.conv2 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), | |
) | |
self.conv3 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), | |
) | |
self.convCat = nn.Sequential( | |
SpectralNorm(nn.Conv2d(indim//3 * 3, indim, kernel_size=(3,3), padding=(1,1), stride=1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(indim, indim, kernel_size=(3,3), padding=(1,1), stride=1)), | |
) | |
def forward(self, x, y, z): | |
c1 = self.conv1(x) | |
c2 = self.conv2(y) | |
c3 = self.conv3(z) | |
return self.convCat(torch.cat([c1,c2,c3], dim=1)) | |
class Query(nn.Module): | |
def __init__(self, indim, quedim): | |
super(Query, self).__init__() | |
self.Query = nn.Sequential( | |
SpectralNorm(nn.Conv2d(indim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(quedim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)), | |
) | |
def forward(self, x): | |
return self.Query(x) | |
def roi_align_self(input, location, target_size): | |
test = (target_size.item(),target_size.item()) | |
return torch.cat([F.interpolate(input[i:i+1,:,location[i,1]:location[i,3],location[i,0]:location[i,2]],test,mode='bilinear',align_corners=False) for i in range(input.size(0))],0) | |
class FeatureExtractor(nn.Module): | |
def __init__(self, ngf = 64, key_scale = 4):# | |
super().__init__() | |
self.key_scale = 4 | |
self.part_sizes = np.array([80,80,50,110]) # | |
self.feature_sizes = np.array([256,128,64]) # | |
self.conv1 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(3, ngf, 3, 2, 1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)), | |
) | |
self.conv2 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)) | |
) | |
self.res1 = DilateResBlock(ngf, [5,3]) | |
self.res2 = DilateResBlock(ngf, [5,3]) | |
self.conv3 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(ngf, ngf*2, 3, 2, 1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)), | |
) | |
self.conv4 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)) | |
) | |
self.res3 = DilateResBlock(ngf*2, [3,1]) | |
self.res4 = DilateResBlock(ngf*2, [3,1]) | |
self.conv5 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(ngf*2, ngf*4, 3, 2, 1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)), | |
) | |
self.conv6 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)) | |
) | |
self.res5 = DilateResBlock(ngf*4, [1,1]) | |
self.res6 = DilateResBlock(ngf*4, [1,1]) | |
self.LE_256_Q = Query(ngf, ngf // self.key_scale) | |
self.RE_256_Q = Query(ngf, ngf // self.key_scale) | |
self.MO_256_Q = Query(ngf, ngf // self.key_scale) | |
self.LE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale) | |
self.RE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale) | |
self.MO_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale) | |
self.LE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale) | |
self.RE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale) | |
self.MO_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale) | |
def forward(self, img, locs): | |
le_location = locs[:,0,:].int().cpu().numpy() | |
re_location = locs[:,1,:].int().cpu().numpy() | |
no_location = locs[:,2,:].int().cpu().numpy() | |
mo_location = locs[:,3,:].int().cpu().numpy() | |
f1_0 = self.conv1(img) | |
f1_1 = self.res1(f1_0) | |
f2_0 = self.conv2(f1_1) | |
f2_1 = self.res2(f2_0) | |
f3_0 = self.conv3(f2_1) | |
f3_1 = self.res3(f3_0) | |
f4_0 = self.conv4(f3_1) | |
f4_1 = self.res4(f4_0) | |
f5_0 = self.conv5(f4_1) | |
f5_1 = self.res5(f5_0) | |
f6_0 = self.conv6(f5_1) | |
f6_1 = self.res6(f6_0) | |
####ROI Align | |
le_part_256 = roi_align_self(f2_1.clone(), le_location//2, self.part_sizes[0]//2) | |
re_part_256 = roi_align_self(f2_1.clone(), re_location//2, self.part_sizes[1]//2) | |
mo_part_256 = roi_align_self(f2_1.clone(), mo_location//2, self.part_sizes[3]//2) | |
le_part_128 = roi_align_self(f4_1.clone(), le_location//4, self.part_sizes[0]//4) | |
re_part_128 = roi_align_self(f4_1.clone(), re_location//4, self.part_sizes[1]//4) | |
mo_part_128 = roi_align_self(f4_1.clone(), mo_location//4, self.part_sizes[3]//4) | |
le_part_64 = roi_align_self(f6_1.clone(), le_location//8, self.part_sizes[0]//8) | |
re_part_64 = roi_align_self(f6_1.clone(), re_location//8, self.part_sizes[1]//8) | |
mo_part_64 = roi_align_self(f6_1.clone(), mo_location//8, self.part_sizes[3]//8) | |
le_256_q = self.LE_256_Q(le_part_256) | |
re_256_q = self.RE_256_Q(re_part_256) | |
mo_256_q = self.MO_256_Q(mo_part_256) | |
le_128_q = self.LE_128_Q(le_part_128) | |
re_128_q = self.RE_128_Q(re_part_128) | |
mo_128_q = self.MO_128_Q(mo_part_128) | |
le_64_q = self.LE_64_Q(le_part_64) | |
re_64_q = self.RE_64_Q(re_part_64) | |
mo_64_q = self.MO_64_Q(mo_part_64) | |
return {'f256': f2_1, 'f128': f4_1, 'f64': f6_1,\ | |
'le256': le_part_256, 're256': re_part_256, 'mo256': mo_part_256, \ | |
'le128': le_part_128, 're128': re_part_128, 'mo128': mo_part_128, \ | |
'le64': le_part_64, 're64': re_part_64, 'mo64': mo_part_64, \ | |
'le_256_q': le_256_q, 're_256_q': re_256_q, 'mo_256_q': mo_256_q,\ | |
'le_128_q': le_128_q, 're_128_q': re_128_q, 'mo_128_q': mo_128_q,\ | |
'le_64_q': le_64_q, 're_64_q': re_64_q, 'mo_64_q': mo_64_q} | |
class DMDNet(nn.Module): | |
def __init__(self, ngf = 64, banks_num = 128): | |
super().__init__() | |
self.part_sizes = np.array([80,80,50,110]) # size for 512 | |
self.feature_sizes = np.array([256,128,64]) # size for 512 | |
self.banks_num = banks_num | |
self.key_scale = 4 | |
self.E_lq = FeatureExtractor(key_scale = self.key_scale) | |
self.E_hq = FeatureExtractor(key_scale = self.key_scale) | |
self.LE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf) | |
self.RE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf) | |
self.MO_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf) | |
self.LE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2) | |
self.RE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2) | |
self.MO_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2) | |
self.LE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4) | |
self.RE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4) | |
self.MO_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4) | |
self.LE_256_Attention = AttentionBlock(64) | |
self.RE_256_Attention = AttentionBlock(64) | |
self.MO_256_Attention = AttentionBlock(64) | |
self.LE_128_Attention = AttentionBlock(128) | |
self.RE_128_Attention = AttentionBlock(128) | |
self.MO_128_Attention = AttentionBlock(128) | |
self.LE_64_Attention = AttentionBlock(256) | |
self.RE_64_Attention = AttentionBlock(256) | |
self.MO_64_Attention = AttentionBlock(256) | |
self.LE_256_Mask = MaskAttention(64) | |
self.RE_256_Mask = MaskAttention(64) | |
self.MO_256_Mask = MaskAttention(64) | |
self.LE_128_Mask = MaskAttention(128) | |
self.RE_128_Mask = MaskAttention(128) | |
self.MO_128_Mask = MaskAttention(128) | |
self.LE_64_Mask = MaskAttention(256) | |
self.RE_64_Mask = MaskAttention(256) | |
self.MO_64_Mask = MaskAttention(256) | |
self.MSDilate = MSDilateBlock(ngf*4, dilation = [4,3,2,1]) | |
self.up1 = StyledUpBlock(ngf*4, ngf*2, noise_inject=False) # | |
self.up2 = StyledUpBlock(ngf*2, ngf, noise_inject=False) # | |
self.up3 = StyledUpBlock(ngf, ngf, noise_inject=False) # | |
self.up4 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)), | |
nn.LeakyReLU(0.2), | |
UpResBlock(ngf), | |
UpResBlock(ngf), | |
SpectralNorm(nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1)), | |
nn.Tanh() | |
) | |
# define generic memory, revise register_buffer to register_parameter for backward update | |
self.register_buffer('le_256_mem_key', torch.randn(128,16,40,40)) | |
self.register_buffer('re_256_mem_key', torch.randn(128,16,40,40)) | |
self.register_buffer('mo_256_mem_key', torch.randn(128,16,55,55)) | |
self.register_buffer('le_256_mem_value', torch.randn(128,64,40,40)) | |
self.register_buffer('re_256_mem_value', torch.randn(128,64,40,40)) | |
self.register_buffer('mo_256_mem_value', torch.randn(128,64,55,55)) | |
self.register_buffer('le_128_mem_key', torch.randn(128,32,20,20)) | |
self.register_buffer('re_128_mem_key', torch.randn(128,32,20,20)) | |
self.register_buffer('mo_128_mem_key', torch.randn(128,32,27,27)) | |
self.register_buffer('le_128_mem_value', torch.randn(128,128,20,20)) | |
self.register_buffer('re_128_mem_value', torch.randn(128,128,20,20)) | |
self.register_buffer('mo_128_mem_value', torch.randn(128,128,27,27)) | |
self.register_buffer('le_64_mem_key', torch.randn(128,64,10,10)) | |
self.register_buffer('re_64_mem_key', torch.randn(128,64,10,10)) | |
self.register_buffer('mo_64_mem_key', torch.randn(128,64,13,13)) | |
self.register_buffer('le_64_mem_value', torch.randn(128,256,10,10)) | |
self.register_buffer('re_64_mem_value', torch.randn(128,256,10,10)) | |
self.register_buffer('mo_64_mem_value', torch.randn(128,256,13,13)) | |
def readMem(self, k, v, q): | |
sim = F.conv2d(q, k) | |
score = F.softmax(sim/sqrt(sim.size(1)), dim=1) #B * S * 1 * 1 6*128 | |
sb,sn,sw,sh = score.size() | |
s_m = score.view(sb, -1).unsqueeze(1)#2*1*M | |
vb,vn,vw,vh = v.size() | |
v_in = v.view(vb, -1).repeat(sb,1,1)#2*M*(c*w*h) | |
mem_out = torch.bmm(s_m, v_in).squeeze(1).view(sb, vn, vw,vh) | |
max_inds = torch.argmax(score, dim=1).squeeze() | |
return mem_out, max_inds | |
def memorize(self, img, locs): | |
fs = self.E_hq(img, locs) | |
LE256_key, LE256_value = self.LE_256_KV(fs['le256']) | |
RE256_key, RE256_value = self.RE_256_KV(fs['re256']) | |
MO256_key, MO256_value = self.MO_256_KV(fs['mo256']) | |
LE128_key, LE128_value = self.LE_128_KV(fs['le128']) | |
RE128_key, RE128_value = self.RE_128_KV(fs['re128']) | |
MO128_key, MO128_value = self.MO_128_KV(fs['mo128']) | |
LE64_key, LE64_value = self.LE_64_KV(fs['le64']) | |
RE64_key, RE64_value = self.RE_64_KV(fs['re64']) | |
MO64_key, MO64_value = self.MO_64_KV(fs['mo64']) | |
Mem256 = {'LE256Key': LE256_key, 'LE256Value': LE256_value, 'RE256Key': RE256_key, 'RE256Value': RE256_value,'MO256Key': MO256_key, 'MO256Value': MO256_value} | |
Mem128 = {'LE128Key': LE128_key, 'LE128Value': LE128_value, 'RE128Key': RE128_key, 'RE128Value': RE128_value,'MO128Key': MO128_key, 'MO128Value': MO128_value} | |
Mem64 = {'LE64Key': LE64_key, 'LE64Value': LE64_value, 'RE64Key': RE64_key, 'RE64Value': RE64_value,'MO64Key': MO64_key, 'MO64Value': MO64_value} | |
FS256 = {'LE256F':fs['le256'], 'RE256F':fs['re256'], 'MO256F':fs['mo256']} | |
FS128 = {'LE128F':fs['le128'], 'RE128F':fs['re128'], 'MO128F':fs['mo128']} | |
FS64 = {'LE64F':fs['le64'], 'RE64F':fs['re64'], 'MO64F':fs['mo64']} | |
return Mem256, Mem128, Mem64 | |
def enhancer(self, fs_in, sp_256=None, sp_128=None, sp_64=None): | |
le_256_q = fs_in['le_256_q'] | |
re_256_q = fs_in['re_256_q'] | |
mo_256_q = fs_in['mo_256_q'] | |
le_128_q = fs_in['le_128_q'] | |
re_128_q = fs_in['re_128_q'] | |
mo_128_q = fs_in['mo_128_q'] | |
le_64_q = fs_in['le_64_q'] | |
re_64_q = fs_in['re_64_q'] | |
mo_64_q = fs_in['mo_64_q'] | |
####for 256 | |
le_256_mem_g, le_256_inds = self.readMem(self.le_256_mem_key, self.le_256_mem_value, le_256_q) | |
re_256_mem_g, re_256_inds = self.readMem(self.re_256_mem_key, self.re_256_mem_value, re_256_q) | |
mo_256_mem_g, mo_256_inds = self.readMem(self.mo_256_mem_key, self.mo_256_mem_value, mo_256_q) | |
le_128_mem_g, le_128_inds = self.readMem(self.le_128_mem_key, self.le_128_mem_value, le_128_q) | |
re_128_mem_g, re_128_inds = self.readMem(self.re_128_mem_key, self.re_128_mem_value, re_128_q) | |
mo_128_mem_g, mo_128_inds = self.readMem(self.mo_128_mem_key, self.mo_128_mem_value, mo_128_q) | |
le_64_mem_g, le_64_inds = self.readMem(self.le_64_mem_key, self.le_64_mem_value, le_64_q) | |
re_64_mem_g, re_64_inds = self.readMem(self.re_64_mem_key, self.re_64_mem_value, re_64_q) | |
mo_64_mem_g, mo_64_inds = self.readMem(self.mo_64_mem_key, self.mo_64_mem_value, mo_64_q) | |
if sp_256 is not None and sp_128 is not None and sp_64 is not None: | |
le_256_mem_s, _ = self.readMem(sp_256['LE256Key'], sp_256['LE256Value'], le_256_q) | |
re_256_mem_s, _ = self.readMem(sp_256['RE256Key'], sp_256['RE256Value'], re_256_q) | |
mo_256_mem_s, _ = self.readMem(sp_256['MO256Key'], sp_256['MO256Value'], mo_256_q) | |
le_256_mask = self.LE_256_Mask(fs_in['le256'],le_256_mem_s,le_256_mem_g) | |
le_256_mem = le_256_mask*le_256_mem_s + (1-le_256_mask)*le_256_mem_g | |
re_256_mask = self.RE_256_Mask(fs_in['re256'],re_256_mem_s,re_256_mem_g) | |
re_256_mem = re_256_mask*re_256_mem_s + (1-re_256_mask)*re_256_mem_g | |
mo_256_mask = self.MO_256_Mask(fs_in['mo256'],mo_256_mem_s,mo_256_mem_g) | |
mo_256_mem = mo_256_mask*mo_256_mem_s + (1-mo_256_mask)*mo_256_mem_g | |
le_128_mem_s, _ = self.readMem(sp_128['LE128Key'], sp_128['LE128Value'], le_128_q) | |
re_128_mem_s, _ = self.readMem(sp_128['RE128Key'], sp_128['RE128Value'], re_128_q) | |
mo_128_mem_s, _ = self.readMem(sp_128['MO128Key'], sp_128['MO128Value'], mo_128_q) | |
le_128_mask = self.LE_128_Mask(fs_in['le128'],le_128_mem_s,le_128_mem_g) | |
le_128_mem = le_128_mask*le_128_mem_s + (1-le_128_mask)*le_128_mem_g | |
re_128_mask = self.RE_128_Mask(fs_in['re128'],re_128_mem_s,re_128_mem_g) | |
re_128_mem = re_128_mask*re_128_mem_s + (1-re_128_mask)*re_128_mem_g | |
mo_128_mask = self.MO_128_Mask(fs_in['mo128'],mo_128_mem_s,mo_128_mem_g) | |
mo_128_mem = mo_128_mask*mo_128_mem_s + (1-mo_128_mask)*mo_128_mem_g | |
le_64_mem_s, _ = self.readMem(sp_64['LE64Key'], sp_64['LE64Value'], le_64_q) | |
re_64_mem_s, _ = self.readMem(sp_64['RE64Key'], sp_64['RE64Value'], re_64_q) | |
mo_64_mem_s, _ = self.readMem(sp_64['MO64Key'], sp_64['MO64Value'], mo_64_q) | |
le_64_mask = self.LE_64_Mask(fs_in['le64'],le_64_mem_s,le_64_mem_g) | |
le_64_mem = le_64_mask*le_64_mem_s + (1-le_64_mask)*le_64_mem_g | |
re_64_mask = self.RE_64_Mask(fs_in['re64'],re_64_mem_s,re_64_mem_g) | |
re_64_mem = re_64_mask*re_64_mem_s + (1-re_64_mask)*re_64_mem_g | |
mo_64_mask = self.MO_64_Mask(fs_in['mo64'],mo_64_mem_s,mo_64_mem_g) | |
mo_64_mem = mo_64_mask*mo_64_mem_s + (1-mo_64_mask)*mo_64_mem_g | |
else: | |
le_256_mem = le_256_mem_g | |
re_256_mem = re_256_mem_g | |
mo_256_mem = mo_256_mem_g | |
le_128_mem = le_128_mem_g | |
re_128_mem = re_128_mem_g | |
mo_128_mem = mo_128_mem_g | |
le_64_mem = le_64_mem_g | |
re_64_mem = re_64_mem_g | |
mo_64_mem = mo_64_mem_g | |
le_256_mem_norm = adaptive_instance_normalization_4D(le_256_mem, fs_in['le256']) | |
re_256_mem_norm = adaptive_instance_normalization_4D(re_256_mem, fs_in['re256']) | |
mo_256_mem_norm = adaptive_instance_normalization_4D(mo_256_mem, fs_in['mo256']) | |
####for 128 | |
le_128_mem_norm = adaptive_instance_normalization_4D(le_128_mem, fs_in['le128']) | |
re_128_mem_norm = adaptive_instance_normalization_4D(re_128_mem, fs_in['re128']) | |
mo_128_mem_norm = adaptive_instance_normalization_4D(mo_128_mem, fs_in['mo128']) | |
####for 64 | |
le_64_mem_norm = adaptive_instance_normalization_4D(le_64_mem, fs_in['le64']) | |
re_64_mem_norm = adaptive_instance_normalization_4D(re_64_mem, fs_in['re64']) | |
mo_64_mem_norm = adaptive_instance_normalization_4D(mo_64_mem, fs_in['mo64']) | |
EnMem256 = {'LE256Norm': le_256_mem_norm, 'RE256Norm': re_256_mem_norm, 'MO256Norm': mo_256_mem_norm} | |
EnMem128 = {'LE128Norm': le_128_mem_norm, 'RE128Norm': re_128_mem_norm, 'MO128Norm': mo_128_mem_norm} | |
EnMem64 = {'LE64Norm': le_64_mem_norm, 'RE64Norm': re_64_mem_norm, 'MO64Norm': mo_64_mem_norm} | |
Ind256 = {'LE': le_256_inds, 'RE': re_256_inds, 'MO': mo_256_inds} | |
Ind128 = {'LE': le_128_inds, 'RE': re_128_inds, 'MO': mo_128_inds} | |
Ind64 = {'LE': le_64_inds, 'RE': re_64_inds, 'MO': mo_64_inds} | |
return EnMem256, EnMem128, EnMem64, Ind256, Ind128, Ind64 | |
def reconstruct(self, fs_in, locs, memstar): | |
le_256_mem_norm, re_256_mem_norm, mo_256_mem_norm = memstar[0]['LE256Norm'], memstar[0]['RE256Norm'], memstar[0]['MO256Norm'] | |
le_128_mem_norm, re_128_mem_norm, mo_128_mem_norm = memstar[1]['LE128Norm'], memstar[1]['RE128Norm'], memstar[1]['MO128Norm'] | |
le_64_mem_norm, re_64_mem_norm, mo_64_mem_norm = memstar[2]['LE64Norm'], memstar[2]['RE64Norm'], memstar[2]['MO64Norm'] | |
le_256_final = self.LE_256_Attention(le_256_mem_norm - fs_in['le256']) * le_256_mem_norm + fs_in['le256'] | |
re_256_final = self.RE_256_Attention(re_256_mem_norm - fs_in['re256']) * re_256_mem_norm + fs_in['re256'] | |
mo_256_final = self.MO_256_Attention(mo_256_mem_norm - fs_in['mo256']) * mo_256_mem_norm + fs_in['mo256'] | |
le_128_final = self.LE_128_Attention(le_128_mem_norm - fs_in['le128']) * le_128_mem_norm + fs_in['le128'] | |
re_128_final = self.RE_128_Attention(re_128_mem_norm - fs_in['re128']) * re_128_mem_norm + fs_in['re128'] | |
mo_128_final = self.MO_128_Attention(mo_128_mem_norm - fs_in['mo128']) * mo_128_mem_norm + fs_in['mo128'] | |
le_64_final = self.LE_64_Attention(le_64_mem_norm - fs_in['le64']) * le_64_mem_norm + fs_in['le64'] | |
re_64_final = self.RE_64_Attention(re_64_mem_norm - fs_in['re64']) * re_64_mem_norm + fs_in['re64'] | |
mo_64_final = self.MO_64_Attention(mo_64_mem_norm - fs_in['mo64']) * mo_64_mem_norm + fs_in['mo64'] | |
le_location = locs[:,0,:] | |
re_location = locs[:,1,:] | |
mo_location = locs[:,3,:] | |
# Somehow with latest Torch it doesn't like numpy wrappers anymore | |
# le_location = le_location.cpu().int().numpy() | |
# re_location = re_location.cpu().int().numpy() | |
# mo_location = mo_location.cpu().int().numpy() | |
le_location = le_location.cpu().int() | |
re_location = re_location.cpu().int() | |
mo_location = mo_location.cpu().int() | |
up_in_256 = fs_in['f256'].clone()# * 0 | |
up_in_128 = fs_in['f128'].clone()# * 0 | |
up_in_64 = fs_in['f64'].clone()# * 0 | |
for i in range(fs_in['f256'].size(0)): | |
up_in_256[i:i+1,:,le_location[i,1]//2:le_location[i,3]//2,le_location[i,0]//2:le_location[i,2]//2] = F.interpolate(le_256_final[i:i+1,:,:,:].clone(), (le_location[i,3]//2-le_location[i,1]//2,le_location[i,2]//2-le_location[i,0]//2),mode='bilinear',align_corners=False) | |
up_in_256[i:i+1,:,re_location[i,1]//2:re_location[i,3]//2,re_location[i,0]//2:re_location[i,2]//2] = F.interpolate(re_256_final[i:i+1,:,:,:].clone(), (re_location[i,3]//2-re_location[i,1]//2,re_location[i,2]//2-re_location[i,0]//2),mode='bilinear',align_corners=False) | |
up_in_256[i:i+1,:,mo_location[i,1]//2:mo_location[i,3]//2,mo_location[i,0]//2:mo_location[i,2]//2] = F.interpolate(mo_256_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//2-mo_location[i,1]//2,mo_location[i,2]//2-mo_location[i,0]//2),mode='bilinear',align_corners=False) | |
up_in_128[i:i+1,:,le_location[i,1]//4:le_location[i,3]//4,le_location[i,0]//4:le_location[i,2]//4] = F.interpolate(le_128_final[i:i+1,:,:,:].clone(), (le_location[i,3]//4-le_location[i,1]//4,le_location[i,2]//4-le_location[i,0]//4),mode='bilinear',align_corners=False) | |
up_in_128[i:i+1,:,re_location[i,1]//4:re_location[i,3]//4,re_location[i,0]//4:re_location[i,2]//4] = F.interpolate(re_128_final[i:i+1,:,:,:].clone(), (re_location[i,3]//4-re_location[i,1]//4,re_location[i,2]//4-re_location[i,0]//4),mode='bilinear',align_corners=False) | |
up_in_128[i:i+1,:,mo_location[i,1]//4:mo_location[i,3]//4,mo_location[i,0]//4:mo_location[i,2]//4] = F.interpolate(mo_128_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//4-mo_location[i,1]//4,mo_location[i,2]//4-mo_location[i,0]//4),mode='bilinear',align_corners=False) | |
up_in_64[i:i+1,:,le_location[i,1]//8:le_location[i,3]//8,le_location[i,0]//8:le_location[i,2]//8] = F.interpolate(le_64_final[i:i+1,:,:,:].clone(), (le_location[i,3]//8-le_location[i,1]//8,le_location[i,2]//8-le_location[i,0]//8),mode='bilinear',align_corners=False) | |
up_in_64[i:i+1,:,re_location[i,1]//8:re_location[i,3]//8,re_location[i,0]//8:re_location[i,2]//8] = F.interpolate(re_64_final[i:i+1,:,:,:].clone(), (re_location[i,3]//8-re_location[i,1]//8,re_location[i,2]//8-re_location[i,0]//8),mode='bilinear',align_corners=False) | |
up_in_64[i:i+1,:,mo_location[i,1]//8:mo_location[i,3]//8,mo_location[i,0]//8:mo_location[i,2]//8] = F.interpolate(mo_64_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//8-mo_location[i,1]//8,mo_location[i,2]//8-mo_location[i,0]//8),mode='bilinear',align_corners=False) | |
ms_in_64 = self.MSDilate(fs_in['f64'].clone()) | |
fea_up1 = self.up1(ms_in_64, up_in_64) | |
fea_up2 = self.up2(fea_up1, up_in_128) # | |
fea_up3 = self.up3(fea_up2, up_in_256) # | |
output = self.up4(fea_up3) # | |
return output | |
def generate_specific_dictionary(self, sp_imgs=None, sp_locs=None): | |
return self.memorize(sp_imgs, sp_locs) | |
def forward(self, lq=None, loc=None, sp_256 = None, sp_128 = None, sp_64 = None): | |
try: | |
fs_in = self.E_lq(lq, loc) # low quality images | |
except Exception as e: | |
print(e) | |
GeMemNorm256, GeMemNorm128, GeMemNorm64, Ind256, Ind128, Ind64 = self.enhancer(fs_in) | |
GeOut = self.reconstruct(fs_in, loc, memstar = [GeMemNorm256, GeMemNorm128, GeMemNorm64]) | |
if sp_256 is not None and sp_128 is not None and sp_64 is not None: | |
GSMemNorm256, GSMemNorm128, GSMemNorm64, _, _, _ = self.enhancer(fs_in, sp_256, sp_128, sp_64) | |
GSOut = self.reconstruct(fs_in, loc, memstar = [GSMemNorm256, GSMemNorm128, GSMemNorm64]) | |
else: | |
GSOut = None | |
return GeOut, GSOut | |
class UpResBlock(nn.Module): | |
def __init__(self, dim, conv_layer = nn.Conv2d, norm_layer = nn.BatchNorm2d): | |
super(UpResBlock, self).__init__() | |
self.Model = nn.Sequential( | |
SpectralNorm(conv_layer(dim, dim, 3, 1, 1)), | |
nn.LeakyReLU(0.2), | |
SpectralNorm(conv_layer(dim, dim, 3, 1, 1)), | |
) | |
def forward(self, x): | |
out = x + self.Model(x) | |
return out | |