from typing import Any, List, Callable import cv2 import numpy as np import onnxruntime import roop.globals from roop.typing import Face, Frame, FaceSet from roop.utilities import resolve_relative_path class Enhance_CodeFormer(): model_codeformer = None plugin_options:dict = None processorname = 'codeformer' type = 'enhance' def Initialize(self, plugin_options:dict): if self.plugin_options is not None: if self.plugin_options["devicename"] != plugin_options["devicename"]: self.Release() self.plugin_options = plugin_options if self.model_codeformer is None: # replace Mac mps with cpu for the moment self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') model_path = resolve_relative_path('../models/CodeFormer/CodeFormerv0.1.onnx') self.model_codeformer = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) self.model_inputs = self.model_codeformer.get_inputs() model_outputs = self.model_codeformer.get_outputs() self.io_binding = self.model_codeformer.io_binding() self.io_binding.bind_cpu_input(self.model_inputs[1].name, np.array([0.5])) self.io_binding.bind_output(model_outputs[0].name, self.devicename) def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame: input_size = temp_frame.shape[1] # preprocess temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC) temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) temp_frame = temp_frame.astype('float32') / 255.0 temp_frame = (temp_frame - 0.5) / 0.5 temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2) self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame.astype(np.float32)) self.model_codeformer.run_with_iobinding(self.io_binding) ort_outs = self.io_binding.copy_outputs_to_cpu() result = ort_outs[0][0] del ort_outs # post-process result = result.transpose((1, 2, 0)) un_min = -1.0 un_max = 1.0 result = np.clip(result, un_min, un_max) result = (result - un_min) / (un_max - un_min) result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR) result = (result * 255.0).round() scale_factor = int(result.shape[1] / input_size) return result.astype(np.uint8), scale_factor def Release(self): del self.model_codeformer self.model_codeformer = None del self.io_binding self.io_binding = None