import cv2 import numpy as np import onnxruntime import roop.globals from roop.utilities import resolve_relative_path from roop.typing import Frame class Frame_Masking(): plugin_options:dict = None model_masking = None devicename = None name = None processorname = 'removebg' type = 'frame_masking' def Initialize(self, plugin_options:dict): if self.plugin_options is not None: if self.plugin_options["devicename"] != plugin_options["devicename"]: self.Release() self.plugin_options = plugin_options if self.model_masking is None: # replace Mac mps with cpu for the moment self.devicename = self.plugin_options["devicename"] self.devicename = self.devicename.replace('mps', 'cpu') model_path = resolve_relative_path('../models/Frame/isnet-general-use.onnx') self.model_masking = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) self.model_inputs = self.model_masking.get_inputs() model_outputs = self.model_masking.get_outputs() self.io_binding = self.model_masking.io_binding() self.io_binding.bind_output(model_outputs[0].name, self.devicename) def Run(self, temp_frame: Frame) -> Frame: # Pre process:Resize, BGR->RGB, float32 cast input_image = cv2.resize(temp_frame, (1024, 1024)) input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB) mean = [0.5, 0.5, 0.5] std = [1.0, 1.0, 1.0] input_image = (input_image / 255.0 - mean) / std input_image = input_image.transpose(2, 0, 1) input_image = np.expand_dims(input_image, axis=0) input_image = input_image.astype('float32') self.io_binding.bind_cpu_input(self.model_inputs[0].name, input_image) self.model_masking.run_with_iobinding(self.io_binding) ort_outs = self.io_binding.copy_outputs_to_cpu() result = ort_outs[0][0] del ort_outs # Post process:squeeze, Sigmoid, Normarize, uint8 cast mask = np.squeeze(result[0]) min_value = np.min(mask) max_value = np.max(mask) mask = (mask - min_value) / (max_value - min_value) #mask = np.where(mask < score_th, 0, 1) #mask *= 255 mask = cv2.resize(mask, (temp_frame.shape[1], temp_frame.shape[0]), interpolation=cv2.INTER_LINEAR) mask = np.reshape(mask, [mask.shape[0],mask.shape[1],1]) result = mask * temp_frame.astype(np.float32) return result.astype(np.uint8) def Release(self): del self.model_masking self.model_masking = None del self.io_binding self.io_binding = None