import numpy as np import cv2 import onnxruntime import roop.globals from roop.typing import Frame from roop.utilities import resolve_relative_path, conditional_thread_semaphore class Mask_XSeg(): plugin_options:dict = None model_xseg = None processorname = 'mask_xseg' type = 'mask' def Initialize(self, plugin_options:dict): if self.plugin_options is not None: if self.plugin_options["devicename"] != plugin_options["devicename"]: self.Release() self.plugin_options = plugin_options if self.model_xseg is None: model_path = resolve_relative_path('../models/xseg.onnx') onnxruntime.set_default_logger_severity(3) self.model_xseg = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) self.model_inputs = self.model_xseg.get_inputs() self.model_outputs = self.model_xseg.get_outputs() # replace Mac mps with cpu for the moment self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') def Run(self, img1, keywords:str) -> Frame: temp_frame = cv2.resize(img1, (256, 256), cv2.INTER_CUBIC) temp_frame = temp_frame.astype('float32') / 255.0 temp_frame = temp_frame[None, ...] io_binding = self.model_xseg.io_binding() io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame) io_binding.bind_output(self.model_outputs[0].name, self.devicename) self.model_xseg.run_with_iobinding(io_binding) ort_outs = io_binding.copy_outputs_to_cpu() result = ort_outs[0][0] result = np.clip(result, 0, 1.0) result[result < 0.1] = 0 # invert values to mask areas to keep result = 1.0 - result return result def Release(self): del self.model_xseg self.model_xseg = None