import cv2 import numpy as np import onnxruntime import roop.globals from roop.utilities import resolve_relative_path, conditional_thread_semaphore from roop.typing import Frame class Frame_Upscale(): plugin_options:dict = None model_upscale = None devicename = None prev_type = None processorname = 'upscale' type = 'frame_enhancer' def Initialize(self, plugin_options:dict): if self.plugin_options is not None: if self.plugin_options["devicename"] != plugin_options["devicename"]: self.Release() self.plugin_options = plugin_options if self.prev_type is not None and self.prev_type != self.plugin_options["subtype"]: self.Release() self.prev_type = self.plugin_options["subtype"] if self.model_upscale is None: # replace Mac mps with cpu for the moment self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') if self.prev_type == "esrganx4": model_path = resolve_relative_path('../models/Frame/real_esrgan_x4.onnx') self.scale = 4 elif self.prev_type == "esrganx2": model_path = resolve_relative_path('../models/Frame/real_esrgan_x2.onnx') self.scale = 2 elif self.prev_type == "lsdirx4": model_path = resolve_relative_path('../models/Frame/lsdir_x4.onnx') self.scale = 4 onnxruntime.set_default_logger_severity(3) self.model_upscale = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) self.model_inputs = self.model_upscale.get_inputs() model_outputs = self.model_upscale.get_outputs() self.io_binding = self.model_upscale.io_binding() self.io_binding.bind_output(model_outputs[0].name, self.devicename) def getProcessedResolution(self, width, height): return (width * self.scale, height * self.scale) # borrowed from facefusion -> https://github.com/facefusion/facefusion def prepare_tile_frame(self, tile_frame : Frame) -> Frame: tile_frame = np.expand_dims(tile_frame[:, :, ::-1], axis = 0) tile_frame = tile_frame.transpose(0, 3, 1, 2) tile_frame = tile_frame.astype(np.float32) / 255 return tile_frame def normalize_tile_frame(self, tile_frame : Frame) -> Frame: tile_frame = tile_frame.transpose(0, 2, 3, 1).squeeze(0) * 255 tile_frame = tile_frame.clip(0, 255).astype(np.uint8)[:, :, ::-1] return tile_frame def create_tile_frames(self, input_frame : Frame, size): input_frame = np.pad(input_frame, ((size[1], size[1]), (size[1], size[1]), (0, 0))) tile_width = size[0] - 2 * size[2] pad_size_bottom = size[2] + tile_width - input_frame.shape[0] % tile_width pad_size_right = size[2] + tile_width - input_frame.shape[1] % tile_width pad_vision_frame = np.pad(input_frame, ((size[2], pad_size_bottom), (size[2], pad_size_right), (0, 0))) pad_height, pad_width = pad_vision_frame.shape[:2] row_range = range(size[2], pad_height - size[2], tile_width) col_range = range(size[2], pad_width - size[2], tile_width) tile_frames = [] for row_frame in row_range: top = row_frame - size[2] bottom = row_frame + size[2] + tile_width for column_vision_frame in col_range: left = column_vision_frame - size[2] right = column_vision_frame + size[2] + tile_width tile_frames.append(pad_vision_frame[top:bottom, left:right, :]) return tile_frames, pad_width, pad_height def merge_tile_frames(self, tile_frames, temp_width : int, temp_height : int, pad_width : int, pad_height : int, size) -> Frame: merge_frame = np.zeros((pad_height, pad_width, 3)).astype(np.uint8) tile_width = tile_frames[0].shape[1] - 2 * size[2] tiles_per_row = min(pad_width // tile_width, len(tile_frames)) for index, tile_frame in enumerate(tile_frames): tile_frame = tile_frame[size[2]:-size[2], size[2]:-size[2]] row_index = index // tiles_per_row col_index = index % tiles_per_row top = row_index * tile_frame.shape[0] bottom = top + tile_frame.shape[0] left = col_index * tile_frame.shape[1] right = left + tile_frame.shape[1] merge_frame[top:bottom, left:right, :] = tile_frame merge_frame = merge_frame[size[1] : size[1] + temp_height, size[1]: size[1] + temp_width, :] return merge_frame def Run(self, temp_frame: Frame) -> Frame: size = (128, 8, 2) temp_height, temp_width = temp_frame.shape[:2] upscale_tile_frames, pad_width, pad_height = self.create_tile_frames(temp_frame, size) for index, tile_frame in enumerate(upscale_tile_frames): tile_frame = self.prepare_tile_frame(tile_frame) with conditional_thread_semaphore(): self.io_binding.bind_cpu_input(self.model_inputs[0].name, tile_frame) self.model_upscale.run_with_iobinding(self.io_binding) ort_outs = self.io_binding.copy_outputs_to_cpu() result = ort_outs[0] upscale_tile_frames[index] = self.normalize_tile_frame(result) final_frame = self.merge_tile_frames(upscale_tile_frames, temp_width * self.scale , temp_height * self.scale , pad_width * self.scale, pad_height * self.scale , (size[0] * self.scale, size[1] * self.scale, size[2] * self.scale)) return final_frame.astype(np.uint8) def Release(self): del self.model_upscale self.model_upscale = None del self.io_binding self.io_binding = None