Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Imports
|
| 2 |
+
import os
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import requests
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
import openai
|
| 7 |
+
|
| 8 |
+
# Suppressing all warnings
|
| 9 |
+
import warnings
|
| 10 |
+
warnings.filterwarnings("ignore")
|
| 11 |
+
|
| 12 |
+
# Image-to-text
|
| 13 |
+
def img2txt(url):
|
| 14 |
+
print("Initializing captioning model...")
|
| 15 |
+
captioning_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
| 16 |
+
|
| 17 |
+
print("Generating text from the image...")
|
| 18 |
+
text = captioning_model(url, max_new_tokens=20)[0]["generated_text"]
|
| 19 |
+
|
| 20 |
+
print(text)
|
| 21 |
+
return text
|
| 22 |
+
|
| 23 |
+
# Text-to-story
|
| 24 |
+
def txt2story(img_text, top_k, top_p, temperature):
|
| 25 |
+
|
| 26 |
+
headers = {"Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}"}
|
| 27 |
+
|
| 28 |
+
data = {
|
| 29 |
+
"model": "togethercomputer/llama-2-70b-chat",
|
| 30 |
+
"messages": [
|
| 31 |
+
{"role": "system", "content": '''As an experienced short story writer, write story title and then create a meaningful story influenced by provided words.
|
| 32 |
+
Ensure stories conclude positively within 100 words. Remember the story must end within 100 words''', "temperature": temperature},
|
| 33 |
+
{"role": "user", "content": f"Here is input set of words: {img_text}", "temperature": temperature}
|
| 34 |
+
],
|
| 35 |
+
"top_k": top_k,
|
| 36 |
+
"top_p": top_p,
|
| 37 |
+
"temperature": temperature
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
response = requests.post("https://api.together.xyz/inference", headers=headers, json=data)
|
| 41 |
+
|
| 42 |
+
story = response.json()["output"]["choices"][0]["text"]
|
| 43 |
+
return story
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# Text-to-speech
|
| 47 |
+
def txt2speech(text):
|
| 48 |
+
print("Initializing text-to-speech conversion...")
|
| 49 |
+
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
| 50 |
+
headers = {"Authorization": f"Bearer {os.environ['HUGGINGFACEHUB_API_TOKEN']}"}
|
| 51 |
+
payloads = {'inputs': text}
|
| 52 |
+
|
| 53 |
+
response = requests.post(API_URL, headers=headers, json=payloads)
|
| 54 |
+
|
| 55 |
+
with open('audio_story.mp3', 'wb') as file:
|
| 56 |
+
file.write(response.content)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# Streamlit web app main function
|
| 60 |
+
def main():
|
| 61 |
+
st.set_page_config(page_title="π¨ Image-to-Audio/Text Story π§", page_icon="πΌοΈ")
|
| 62 |
+
st.title("Turn the Image into Audio/Text Story")
|
| 63 |
+
|
| 64 |
+
# Allows users to upload an image file
|
| 65 |
+
uploaded_file = st.file_uploader("# π· Upload an image...", type=["jpg", "jpeg", "png"])
|
| 66 |
+
|
| 67 |
+
# Parameters for LLM model (in the sidebar)
|
| 68 |
+
st.sidebar.markdown("# LLM Inference Configuration Parameters")
|
| 69 |
+
top_k = st.sidebar.number_input("Top-K", min_value=1, max_value=100, value=5)
|
| 70 |
+
top_p = st.sidebar.number_input("Top-P", min_value=0.0, max_value=1.0, value=0.8)
|
| 71 |
+
temperature = st.sidebar.number_input("Temperature", min_value=0.1, max_value=2.0, value=1.5)
|
| 72 |
+
|
| 73 |
+
if uploaded_file is not None:
|
| 74 |
+
# Reads and saves uploaded image file
|
| 75 |
+
bytes_data = uploaded_file.read()
|
| 76 |
+
with open("uploaded_image.jpg", "wb") as file:
|
| 77 |
+
file.write(bytes_data)
|
| 78 |
+
|
| 79 |
+
st.image(uploaded_file, caption='πΌοΈ Uploaded Image', use_column_width=True)
|
| 80 |
+
|
| 81 |
+
# Initiates AI processing and story generation
|
| 82 |
+
with st.spinner("## π€ AI is at Work! "):
|
| 83 |
+
scenario = img2txt("uploaded_image.jpg") # Extracts text from the image
|
| 84 |
+
story = txt2story(scenario, top_k, top_p, temperature) # Generates a story based on the image text, LLM params
|
| 85 |
+
txt2speech(story) # Converts the story to audio
|
| 86 |
+
|
| 87 |
+
st.markdown("---")
|
| 88 |
+
st.markdown("## π Image Caption")
|
| 89 |
+
st.write(scenario)
|
| 90 |
+
|
| 91 |
+
st.markdown("---")
|
| 92 |
+
st.markdown("## π Story")
|
| 93 |
+
st.write(story)
|
| 94 |
+
|
| 95 |
+
st.markdown("---")
|
| 96 |
+
st.markdown("## π§ Audio Story")
|
| 97 |
+
st.audio("audio_story.mp3")
|
| 98 |
+
|
| 99 |
+
if __name__ == '__main__':
|
| 100 |
+
main()
|
| 101 |
+
|
| 102 |
+
# Credits
|
| 103 |
+
st.markdown("### Credits")
|
| 104 |
+
st.caption('''
|
| 105 |
+
Made by Nithin John\n
|
| 106 |
+
Utilizes Image-to-text, Text Generation, Text-to-speech Transformer Models\n
|
| 107 |
+
Gratitude to Streamlit, π€ Spaces for Deployment & Hosting
|
| 108 |
+
''')
|