import os def list_files_tree(directory, indent=""): # 获取当前目录下的所有文件和文件夹 items = os.listdir(directory) for i, item in enumerate(items): # 定义前缀,最后一个文件或文件夹使用不同的前缀 prefix = "└── " if i == len(items) - 1 else "├── " # 打印文件或文件夹 print(indent + prefix + item) # 如果是文件夹,则递归调用 item_path = os.path.join(directory, item) if os.path.isdir(item_path): # 如果是最后一个子文件夹,使用缩进 next_indent = indent + (" " if i == len(items) - 1 else "│ ") list_files_tree(item_path, next_indent) from huggingface_hub import snapshot_download print("Models...") model_id = "None1145/GPT-SoVITS-Lappland-the-Decadenza" snapshot_download(repo_id=model_id, local_dir=f"./Models/{model_id}") print("Models!!!") print("PretrainedModels...") model_id = "None1145/GPT-SoVITS-Base" snapshot_download(repo_id=model_id, local_dir=f"./PretrainedModels/{model_id}") print("PretrainedModels!!!") list_files_tree("./") cnhubert_base_path = f"./PretrainedModels/{model_id}/chinese-hubert-base" bert_path = f"./PretrainedModels/{model_id}/chinese-roberta-wwm-ext-large" import gradio as gr from transformers import AutoModelForMaskedLM, AutoTokenizer import sys, torch, numpy as np from pathlib import Path from pydub import AudioSegment import librosa, math, traceback, requests, argparse, torch, multiprocessing, pandas as pd, torch.multiprocessing as mp, soundfile from random import shuffle from AR.utils import get_newest_ckpt from glob import glob from tqdm import tqdm from feature_extractor import cnhubert cnhubert.cnhubert_base_path=cnhubert_base_path from io import BytesIO from module.models import SynthesizerTrn from AR.models.t2s_lightning_module import Text2SemanticLightningModule from AR.utils.io import load_yaml_config from text import cleaned_text_to_sequence from text.cleaner import text_to_sequence, clean_text from time import time as ttime from module.mel_processing import spectrogram_torch from my_utils import load_audio import re import logging logging.getLogger('httpx').setLevel(logging.WARNING) logging.getLogger('httpcore').setLevel(logging.WARNING) logging.getLogger('multipart').setLevel(logging.WARNING) device = "cpu" is_half = False tokenizer = AutoTokenizer.from_pretrained(bert_path) bert_model=AutoModelForMaskedLM.from_pretrained(bert_path) if(is_half==True):bert_model=bert_model.half().to(device) else:bert_model=bert_model.to(device) def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") for i in inputs: inputs[i] = inputs[i].to(device) res = bert_model(**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] assert len(word2ph) == len(text) phone_level_feature = [] for i in range(len(word2ph)): repeat_feature = res[i].repeat(word2ph[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature = torch.cat(phone_level_feature, dim=0) return phone_level_feature.T def load_model(sovits_path, gpt_path): n_semantic = 1024 dict_s2 = torch.load(sovits_path, map_location="cpu") hps = dict_s2["config"] class DictToAttrRecursive: def __init__(self, input_dict): for key, value in input_dict.items(): if isinstance(value, dict): # 如果值是字典,递归调用构造函数 setattr(self, key, DictToAttrRecursive(value)) else: setattr(self, key, value) hps = DictToAttrRecursive(hps) hps.model.semantic_frame_rate = "25hz" dict_s1 = torch.load(gpt_path, map_location="cpu") config = dict_s1["config"] ssl_model = cnhubert.get_model() if (is_half == True): ssl_model = ssl_model.half().to(device) else: ssl_model = ssl_model.to(device) vq_model = SynthesizerTrn( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model) if (is_half == True): vq_model = vq_model.half().to(device) else: vq_model = vq_model.to(device) vq_model.eval() vq_model.load_state_dict(dict_s2["weight"], strict=False) hz = 50 max_sec = config['data']['max_sec'] # t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False) t2s_model.load_state_dict(dict_s1["weight"]) if (is_half == True): t2s_model = t2s_model.half() t2s_model = t2s_model.to(device) t2s_model.eval() total = sum([param.nelement() for param in t2s_model.parameters()]) print("Number of parameter: %.2fM" % (total / 1e6)) return vq_model, ssl_model, t2s_model, hps, config, hz, max_sec def get_spepc(hps, filename): audio=load_audio(filename,int(hps.data.sampling_rate)) audio=torch.FloatTensor(audio) audio_norm = audio audio_norm = audio_norm.unsqueeze(0) spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False) return spec def create_tts_fn(vq_model, ssl_model, t2s_model, hps, config, hz, max_sec): def tts_fn(ref_wav_path, prompt_text, prompt_language, text, text_language): t0 = ttime() prompt_text=prompt_text.strip("\n") prompt_language,text=prompt_language,text.strip("\n") print(text) if len(text) > 50: return f"Error: Text is too long, ({len(text)}>50)", None with torch.no_grad(): wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙 wav16k = torch.from_numpy(wav16k) if(is_half==True):wav16k=wav16k.half().to(device) else:wav16k=wav16k.to(device) ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float() codes = vq_model.extract_latent(ssl_content) prompt_semantic = codes[0, 0] t1 = ttime() phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) phones1=cleaned_text_to_sequence(phones1) texts=text.split("\n") audio_opt = [] zero_wav=np.zeros(int(hps.data.sampling_rate*0.3),dtype=np.float16 if is_half==True else np.float32) for text in texts: phones2, word2ph2, norm_text2 = clean_text(text, text_language) phones2 = cleaned_text_to_sequence(phones2) if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device) else:bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device) if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device) else:bert2 = torch.zeros((1024, len(phones2))).to(bert1) bert = torch.cat([bert1, bert2], 1) all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) prompt = prompt_semantic.unsqueeze(0).to(device) t2 = ttime() with torch.no_grad(): # pred_semantic = t2s_model.model.infer( pred_semantic,idx = t2s_model.model.infer_panel( all_phoneme_ids, all_phoneme_len, prompt, bert, # prompt_phone_len=ph_offset, top_k=config['inference']['top_k'], early_stop_num=hz * max_sec) t3 = ttime() # print(pred_semantic.shape,idx) pred_semantic = pred_semantic[:,-idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次 refer = get_spepc(hps, ref_wav_path)#.to(device) if(is_half==True):refer=refer.half().to(device) else:refer=refer.to(device) # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分 audio_opt.append(audio) audio_opt.append(zero_wav) t4 = ttime() print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) return "Success", (hps.data.sampling_rate,(np.concatenate(audio_opt,0)*32768).astype(np.int16)) return tts_fn splits={",","。","?","!",",",".","?","!","~",":",":","—","…",}#不考虑省略号 def split(todo_text): todo_text = todo_text.replace("……", "。").replace("——", ",") if (todo_text[-1] not in splits): todo_text += "。" i_split_head = i_split_tail = 0 len_text = len(todo_text) todo_texts = [] while (1): if (i_split_head >= len_text): break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 if (todo_text[i_split_head] in splits): i_split_head += 1 todo_texts.append(todo_text[i_split_tail:i_split_head]) i_split_tail = i_split_head else: i_split_head += 1 return todo_texts def change_reference_audio(prompt_text, transcripts): return transcripts[prompt_text] def get_audio_duration(path): audio = AudioSegment.from_wav(path) return len(audio) / 1000 def select_audio_file(wav_paths): import random eligible_files = [path for path in wav_paths if 3 <= get_audio_duration(path) <= 10] if eligible_files: selected_file = random.choice(eligible_files) else: selected_file = random.choice(wav_paths) return selected_file models = [] models_info = {} models_folder_path = "./Models/None1145" folder_names = [name for name in os.listdir(models_folder_path) if os.path.isdir(os.path.join(models_folder_path, name))] for folder_name in folder_names: speaker = folder_name[11:] models_info[speaker] = {} models_info[speaker]["title"] = speaker pattern = re.compile(r"s(\d+)\.pth$") max_value = -1 max_file = None sovits_path = f"{models_folder_path}/{folder_name}/SoVITS_weights" for filename in os.listdir(sovits_path): match = pattern.search(filename) if match: value = int(match.group(1)) if value > max_value: max_value = value max_file = filename models_info[speaker]["sovits_weight"] = f"{sovits_path}/{max_file}" pattern = re.compile(r"e(\d+)\.ckpt$") max_value = -1 max_file = None gpt_path = f"{models_folder_path}/{folder_name}/GPT_weights" for filename in os.listdir(gpt_path): match = pattern.search(filename) if match: value = int(match.group(1)) if value > max_value: max_value = value max_file = filename models_info[speaker]["gpt_weight"] = f"{gpt_path}/{max_file}" data_path = f"{models_folder_path}/{folder_name}/Data" models_info[speaker]["transcript"] = {} wavs = [] tmp = {} with open(f"{data_path}/{speaker}.list", "r", encoding="utf-8") as f: for line in f.read().split("\n"): try: wav = f"{models_folder_path}/{folder_name}/Data/{line.split('|')[0].split('/')[1]}" except: break text = line.split("|")[3] print(wav, text) wavs.append(wav) tmp[wav] = text models_info[speaker]["transcript"][text] = wav models_info[speaker]["example_reference"] = tmp[select_audio_file(wavs)] print(models_info) for speaker in models_info: speaker_info = models_info[speaker] title = speaker_info["title"] sovits_weight = speaker_info["sovits_weight"] gpt_weight = speaker_info["gpt_weight"] vq_model, ssl_model, t2s_model, hps, config, hz, max_sec = load_model(sovits_weight, gpt_weight) models.append( ( speaker, title, speaker_info["transcript"], speaker_info["example_reference"], create_tts_fn( vq_model, ssl_model, t2s_model, hps, config, hz, max_sec ) ) ) print(models) with gr.Blocks() as app: with gr.Tabs(): for (name, title, transcript, example_reference, tts_fn) in models: with gr.TabItem(name): with gr.Row(): gr.Markdown( '