Spaces:
Running
Running
File size: 5,091 Bytes
bcd4798 b46a44f d840e13 bcd4798 115b9e5 6eddcef d8346f3 bcd4798 d840e13 bcd4798 63349a0 40c0e85 bcd4798 d840e13 bcd4798 40c0e85 ab15d7a 40c0e85 5f44cc4 376d672 62e2d80 1d09186 ab15d7a 5f44cc4 40c0e85 bce5a4e 6eddcef bcd4798 40c0e85 bcd4798 40c0e85 bcd4798 43df289 bcd4798 6a1f8fc d840e13 5e944b9 148c8cd 40c0e85 bcd4798 99b53b8 bcd4798 376d672 ad08350 376d672 bcd4798 61584c7 bcd4798 d840e13 bcd4798 63349a0 bcd4798 d840e13 bcd4798 63349a0 bcd4798 40c0e85 bcd4798 6eddcef 40c0e85 ab15d7a 40c0e85 6eddcef bcd4798 43df289 bcd4798 da61117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
import numpy as np
import random
import time
from optimum.intel import OVStableDiffusionXLPipeline
import torch
from diffusers import EulerDiscreteScheduler
from io import BytesIO
from PIL import Image
import base64
import requests
model_id = "None1145/noobai-XL-Vpred-0.65s-openvino"
prev_height = 1216
prev_width = 832
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def reload_model(new_model_id):
global pipe, model_id, prev_height, prev_width
model_id = new_model_id
try:
print(f"{model_id}...")
pipe = OVStableDiffusionXLPipeline.from_pretrained(model_id, compile=False)
if model_id == "None1145/noobai-XL-Vpred-0.65s-openvino":
scheduler_args = {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True}
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, **scheduler_args)
pipe.reshape(batch_size=1, height=prev_height, width=prev_width, num_images_per_prompt=1)
pipe.compile()
print(f"{model_id}!!!")
return f"Model successfully loaded: {model_id}"
except Exception as e:
return f"Failed to load model: {str(e)}"
reload_model(model_id)
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
):
global prev_width, prev_height, pipe
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if prev_width != width or prev_height != height:
pipe.reshape(batch_size=1, height=height, width=width, num_images_per_prompt=1)
pipe.compile()
prev_width = width
prev_height = height
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = ["murasame \(senren\), senren banka",]
with gr.Blocks() as img:
gr.Markdown("# OpenVINO Text to Image")
gr.Markdown("### It usually takes 2200 seconds to generate an 832x1216 image (28 steps) (CPU).")
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
value="murasame \(senren\), senren banka"
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=60,
step=1,
value=28,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False, value=Image.open("./example.webp"))
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=832,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1216,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.Markdown("### Model Reload")
with gr.Row():
new_model_id = gr.Text(label="New Model ID", placeholder="Enter model ID", value=model_id)
reload_button = gr.Button("Reload Model", variant="primary")
reload_status = gr.Text(label="Status", interactive=False)
reload_button.click(
fn=reload_model,
inputs=new_model_id,
outputs=reload_status,
)
run_button.click(
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
img.queue(max_size=10).launch()
|