Apocalyptify / app.py
Norod78's picture
Update app.py
e17b1b8
raw
history blame
3.66 kB
import os
os.system("pip install --upgrade pip")
os.system("pip install dlib")
import sys
import face_detection
import PIL
from PIL import Image, ImageOps
import numpy as np
import torch
torch.set_grad_enabled(False)
net = torch.jit.load('apocalyptify_p2s2p_torchscript_cpu.pt')
net.eval()
def tensor2im(var):
var = var.cpu().detach().transpose(0, 2).transpose(0, 1).numpy()
var = ((var + 1) / 2)
var[var < 0] = 0
var[var > 1] = 1
var = var * 255
return Image.fromarray(var.astype('uint8'))
def image_as_array(image_in):
im_array = np.array(image_in, np.float32)
im_array = (im_array/255)*2 - 1
im_array = np.transpose(im_array, (2, 0, 1))
im_array = np.expand_dims(im_array, 0)
return im_array
def find_aligned_face(image_in, size=256):
aligned_image, n_faces, quad = face_detection.align(image_in, face_index=0, output_size=size)
return aligned_image, n_faces, quad
def align_first_face(image_in, size=256):
aligned_image, n_faces, quad = find_aligned_face(image_in,size=size)
if n_faces == 0:
try:
image_in = ImageOps.exif_transpose(image_in)
except:
print("exif problem, not rotating")
image_in = image_in.resize((size, size))
im_array = image_as_array(image_in)
else:
im_array = image_as_array(aligned_image)
return im_array
def img_concat_h(im1, im2):
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, 0))
return dst
import gradio as gr
def face2drag(
img: Image.Image,
size: int
) -> Image.Image:
aligned_img = align_first_face(img)
if aligned_img is None:
output=None
else:
input = torch.Tensor(aligned_img)
output = net(input)
output = tensor2im(output[0])
output = img_concat_h(tensor2im(torch.Tensor(aligned_img)[0]), output)
return output
import os
import collections
from typing import Union, List
import numpy as np
from PIL import Image
import PIL.Image
import PIL.ImageFile
import numpy as np
import scipy.ndimage
import requests
def inference(img):
out = face2drag(img, 256)
return out
title = "Apocalyptify"
description = "How will your face look after the Apocalypse? Will you become a Zombie? A Ghoul? A person who fights them? Upload an image with a face, or click one of the examples below. If a face could not be detected, A face will still be created based on the features of the input."
article = "<p style='text-align: center'><a href='https://github.com/justinpinkney/pixel2style2pixel/tree/nw' target='_blank'>Github Repo</a></p><p style='text-align: center'>samples: <img src='https://hf.space/gradioiframe/Norod78/Apocalyptify/file/Sample00001.jpg' alt='Sample00001'/><img src='https://hf.space/gradioiframe/Norod78/Apocalyptify/file/Sample00002.jpg' alt='Sample00002'/><img src='https://hf.space/gradioiframe/Norod78/Apocalyptify/file/Sample00003.jpg' alt='Sample00003'/><img src='https://hf.space/gradioiframe/Norod78/Apocalyptify/file/Sample00004.jpg' alt='Sample00004'/><img src='https://hf.space/gradioiframe/Norod78/Apocalyptify/file/Sample00005.jpg' alt='Sample00005'/></p><p>The Apocalypse model was fine tuned on a pre-trained Pixel2Style2Pixel model by Doron Adler</p>"
examples=[['Example00001.jpg'],['Example00002.jpg'],['Example00003.jpg'],['Example00004.jpg'],['Example00005.jpg'], ['Example00006.jpg']]
gr.Interface(inference, gr.inputs.Image(type="pil",shape=(1024,1024)), gr.outputs.Image(type="pil", shape=(1024,1024)),title=title,description=description,article=article,examples=examples,enable_queue=True).launch()