Spaces:
Runtime error
Runtime error
import os | |
import logging | |
import streamlit as st | |
from git import Repo | |
from langchain import HuggingFaceHub, LLMChain | |
# Set page configuration | |
st.set_page_config(layout="wide", initial_sidebar_state="auto") | |
# Collect user inputs | |
repository_url = st.text_input("Enter GitHub repository URL:", "") | |
access_token = st.text_input("Enter GitHub access token (optional):", "") | |
debug_logging = st.checkbox("Enable debug logging") | |
# Run the process | |
if st.button("Run"): | |
if debug_logging: | |
logging.basicConfig(filename='log.txt', level=logging.DEBUG, format='%(asctime)s %(message)s') | |
logging.debug('Starting the process') | |
# Clone the repository | |
local_path = "/tmp/repository" | |
Repo.clone_from(repository_url, local_path, branch="main", env={"GIT_TERMINAL_PROMPT": "0", "GIT_SSL_NO_VERIFY": "true"}) | |
# Initialize Hugging Face model | |
os.environ['HUGGINGFACEHUB_API_TOKEN'] = access_token | |
hub_llm = HuggingFaceHub(repo_id='google/flan-t5-xl', model_kwargs={'temperature': 1e-10}) | |
# Create a prompt template and LLM chain | |
prompt = f"What is the main purpose of the repository at {repository_url}?" | |
llm_chain = LLMChain(prompt=prompt, llm=hub_llm) | |
# Get the result | |
answer = llm_chain.run() | |
st.write("Answer:", answer) | |
if debug_logging: | |
logging.debug('Finished the process') | |
# Run pip freeze and pip install -r requirements.txt | |
os.system("pip freeze > requirements.txt") | |
os.system("pip install -r requirements.txt") |