|
import os
|
|
from dotenv import find_dotenv, load_dotenv
|
|
import streamlit as st
|
|
from typing import Generator
|
|
from groq import Groq
|
|
|
|
_ = load_dotenv(find_dotenv())
|
|
st.set_page_config(page_icon="π", layout="wide", page_title="Groq & LLaMA3.1 Chat Bot...")
|
|
|
|
|
|
def icon(emoji: str):
|
|
"""Shows an emoji as a Notion-style page icon."""
|
|
st.write(
|
|
f'<span style="font-size: 78px; line-height: 1">{emoji}</span>',
|
|
unsafe_allow_html=True,
|
|
)
|
|
|
|
|
|
|
|
|
|
st.subheader("Groq Chat with LLaMA3.1 App", divider="rainbow", anchor=False)
|
|
|
|
client = Groq(
|
|
api_key=os.environ['GROQ_API_KEY'],
|
|
)
|
|
|
|
|
|
if "messages" not in st.session_state:
|
|
st.session_state.messages = []
|
|
|
|
if "selected_model" not in st.session_state:
|
|
st.session_state.selected_model = None
|
|
|
|
|
|
models = {
|
|
"llama-3.1-70b-versatile": {"name": "LLaMA3.1-70b", "tokens": 4096, "developer": "Meta"},
|
|
"llama-3.1-8b-instant": {"name": "LLaMA3.1-8b", "tokens": 4096, "developer": "Meta"},
|
|
"llama3-70b-8192": {"name": "Meta Llama 3 70B", "tokens": 4096, "developer": "Meta"},
|
|
"llama3-8b-8192": {"name": "Meta Llama 3 8B", "tokens": 4096, "developer": "Meta"},
|
|
"llama3-groq-70b-8192-tool-use-preview": {"name": "Llama 3 Groq 70B Tool Use (Preview)", "tokens": 4096, "developer": "Groq"},
|
|
"gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 4096, "developer": "Google"},
|
|
"mixtral-8x7b-32768": {
|
|
"name": "Mixtral-8x7b-Instruct-v0.1",
|
|
"tokens": 32768,
|
|
"developer": "Mistral",
|
|
},
|
|
}
|
|
|
|
|
|
col1, col2 = st.columns([1, 3])
|
|
|
|
|
|
with col1:
|
|
model_option = st.selectbox(
|
|
"Choose a model:",
|
|
options=list(models.keys()),
|
|
format_func=lambda x: models[x]["name"],
|
|
index=0,
|
|
)
|
|
max_tokens_range = models[model_option]["tokens"]
|
|
max_tokens = st.slider(
|
|
"Max Tokens:",
|
|
min_value=512,
|
|
max_value=max_tokens_range,
|
|
value=min(32768, max_tokens_range),
|
|
step=512,
|
|
help=f"Adjust the maximum number of tokens (words) for the model's response. Max for selected model: {max_tokens_range}",
|
|
)
|
|
|
|
|
|
if st.session_state.selected_model != model_option:
|
|
st.session_state.messages = []
|
|
st.session_state.selected_model = model_option
|
|
|
|
|
|
if st.button("Clear Chat"):
|
|
st.session_state.messages = []
|
|
|
|
|
|
for message in st.session_state.messages:
|
|
avatar = "π" if message["role"] == "assistant" else "π§βπ»"
|
|
with st.chat_message(message["role"], avatar=avatar):
|
|
st.markdown(message["content"])
|
|
|
|
|
|
def generate_chat_responses(chat_completion) -> Generator[str, None, None]:
|
|
"""Yield chat response content from the Groq API response."""
|
|
for chunk in chat_completion:
|
|
if chunk.choices[0].delta.content:
|
|
yield chunk.choices[0].delta.content
|
|
|
|
|
|
if prompt := st.chat_input("Enter your prompt here..."):
|
|
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
|
|
with st.chat_message("user", avatar="π§βπ»"):
|
|
st.markdown(prompt)
|
|
|
|
|
|
try:
|
|
chat_completion = client.chat.completions.create(
|
|
model=model_option,
|
|
messages=[
|
|
{"role": m["role"], "content": m["content"]}
|
|
for m in st.session_state.messages
|
|
],
|
|
max_tokens=max_tokens,
|
|
stream=True,
|
|
)
|
|
|
|
|
|
with st.chat_message("assistant", avatar="π"):
|
|
chat_responses_generator = generate_chat_responses(chat_completion)
|
|
full_response = st.write_stream(chat_responses_generator)
|
|
except Exception as e:
|
|
st.error(e, icon="β")
|
|
|
|
|
|
if isinstance(full_response, str):
|
|
st.session_state.messages.append(
|
|
{"role": "assistant", "content": full_response}
|
|
)
|
|
else:
|
|
|
|
combined_response = "\n".join(str(item) for item in full_response)
|
|
st.session_state.messages.append(
|
|
{"role": "assistant", "content": combined_response}
|
|
) |