Playground / multimodal_ai.py
NotYuSheng's picture
Update multimodal_ai.py
33a7ee6 verified
raw
history blame
1.94 kB
import os
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import HfApi, login
class MultimodalAI:
def __init__(self):
# Obtain Hugging Face token in .env file
self.HUGGINGFACE_TOKEN = os.environ["HUGGINGFACE_TOKEN"]
# Check if the token is retrieved successfully
if self.HUGGINGFACE_TOKEN is None:
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set.")
# Authenticate with Hugging Face
self.api = HfApi()
login(token=self.HUGGINGFACE_TOKEN)
# Model selection
self.model_name = "meta-llama/Llama-2-7b-hf"
# Check if a CUDA-enabled GPU is available.
# If available, move the model to the GPU (cuda:0) for faster computation.
# Otherwise, move the model to the CPU.
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the model and tokenizer
self._load_model_and_tokenizer()
def _load_model_and_tokenizer(self):
# Load LLama model and tokenizer
self.model = AutoModelForCausalLM.from_pretrained(self.model_name,
token=self.HUGGINGFACE_TOKEN).to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name,
token=self.HUGGINGFACE_TOKEN)
def generate_response(self, text_input, max_new_tokens=50):
# Tokenize input text
inputs = self.tokenizer(text_input, return_tensors="pt").to(self.device)
# Generate response
with torch.no_grad():
outputs = self.model.generate(**inputs, max_new_tokens=max_new_tokens, pad_token_id=self.tokenizer.pad_token_id)
# Decode and return the response
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return response_text